
Neural Network - Supervised Learning 

Supervised learning is the algorithmic process of approximating the underlying function between 
labeled data and their corresponding attributes or features. A popular example of supervised 
learning is that of a machine that is asked to distinguish between apples and pears (labeled data) 
given a set of features or data attributes such as the fruits’ color and size. Initially, the machine 
learns to classify between apples and pears by seeing a number of available fruit examples—
which contain the color and size of each fruit, on one hand, and their corresponding label (apple 
or pear) on the other. After learning is complete, the machine should ideally be able to tell 
whether a new and unseen fruit is a pear or an apple based solely on its color and size. Beyond 
distinguishing between apples and pears supervised learning nowadays is used in a plethora of 
applications including financial services, medical diagnosis, fraud detection, web page 
categorization, image and speech recognition, and user modeling (among many). 

 

 

 

 

Evidently, supervised learning requires a set of labeled training examples; hence supervised. 
More specifically, the training signal comes as a set of supervised labels on the data (e.g., this is 
an apple whereas that one is a pear) which acts upon a set of characterizations of these labels 
(e.g., this apple has red color and medium size).  
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Artificial Neural Networks
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 The artificial neuron (see Figure below) resembles the biological neuron as it has a number of 
inputs x (corresponding to the neuron dendrites) each with an associated weight parameter w 
(corresponding to the synaptic strength). It also has a processing unit that combines inputs with 
their corresponding weights via an inner product (weighted sum) and adds a bias (or threshold) 
weight b to the weighted sum as follows: x·w+b. This value is then fed to an activation function 
g (cell body) that yields the output of the neuron (corresponding to an axon terminal). ANNs are 
essentially simple mathematical models defining a function f : x → y. 

 

An illustration of an artificial neuron, the neuron is fed with the input vector x through n connections with 
corresponding weight values w. The neuron processes the input by calculating the weighted sum of inputs 
and corresponding connection weights and adding a bias weight (b): x·w+b. The resulting formula feeds 

an activation function (g), the value of which defines the output of the neuron. 

 

Core application areas include pattern recognition, robot and agent control, game-playing, 
decision making, gesture, speech and text recognition, medical and financial applications, 
affective modeling, and image recognition 

 

Activation Functions 

Which activation function should one use in an ANN? The original model of a neuron by 
McCulloch and Pitts in 1943 featured a Heaviside step activation function (see Figure below) 
which either allows the neuron to fire or not. When such neurons are employed and connected to 
a multi-layered ANN the resulting network can merely solve linearly separable problems.  
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allow for faster and (empirically) more effective training of deep ANNs, which are
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allow for faster and (empirically) more effective training of deep ANNs, which are

From a Neuron to a Network 

To form an ANN a number of neurons need to be structured and connected. While
ways have been proposed in the literature the most common of them all is to structure neurons in 
layers. In its simplest form, known as the multi-layer perceptron (MLP), neurons in an ANN 
are layered across one or more layers but not connected to other neurons in the same layer (see 

structure).  
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An MLP example with three inputs, one hidden layer containing four hidden neurons and two outputs. 
The ANN has labeled and ordered neurons and example connection weight labels. Bias weights bj are not 
illustrated in this example but are connected to each neuron j of the ANN. 

 

Forward Operation 

In the previous section we defined the core components of an ANN whereas in this section we 
will see how we compute the output of the ANN when an input pattern is presented. The process 
is called forward operation and propagates the inputs of the ANN throughout its 
consecutive layers to yield the outputs. The basic steps of the forward operation are as follows: 

 

1- Label and order neurons. We typically start numbering at the input layer and increment 
the numbers towards the output layer (see above Figure). Note that the input layer does 
not contain neurons, nevertheless is treated as such for numbering purposes only. 
 

2- Label connection weights assuming that wij is the connection weight from neuron i (pre-
synaptic neuron) to neuron j (post-synaptic neuron). Label bias weights that connect to 

neuron j as bj 

 

3- Present an input pattern x. 



4- For each neuron j compute its output as follows: αj = g( ∑i {wij αi }+bj ), where αj 

and αi are, respectively, the output of and the inputs to neuron j (n.b. αi = xi in the 

input layer); g is the activation function (usually the logistic sigmoid function). 
 

5- The outputs of the neurons of the output layer are the outputs of the ANN. 

 

How Does an ANN Learn? 

How do we approximate f(x, w, b) so that the outputs of the ANN match the desired outputs 
(labels) of our dataset, y? We will need a training algorithm that adjusts the weights (w and 
b) so that f : x → y. A training algorithm as such requires two components: 

 First, it requires a cost function to evaluate the quality of any set of weights.  

Second, it requires a search strategy within the space of possible solutions (i.e., the weight 
space).  

 

Cost (Error) Function 

 

Before we attempt to adjust the weights to approximate f, we need some measure of MLP 
performance. The most common performance measure for training ANNs in a supervised 
manner is the squared Euclidean distance (error) between the vectors of the actual output of 
the ANN (α) and the desired labeled output (y). 

 

 

where the sum is taken over all the output neurons (the neurons in the final layer). Note that the 

yj labels are constant values and more importantly, also note that E is a function of all the 
weights of the ANN since the actual outputs depend on them. As we will see below, ANN 
training algorithms build strongly upon this relationship between error and weights. 

 

 



Backpropagation 

 

The backpropagation (or backprop) algorithm is based on gradient descent optimization and 
is arguably the most common algorithm for training ANNs. Backpropagation stands for 
backward propagation of errors as it calculates weight updates that minimize the error 
function from the output to the input layer.  

In a nutshell, backpropagation computes the partial derivative (gradient) of the error 
function E with respect to each weight of the ANN and adjusts the weights of the ANN 
following the (opposite direction of the) gradient that minimizes E. 

 

As mentioned earlier, the squared Euclidean error depends on the weights as the ANN output 
which is essentially the f (x; w, b) function. As such we can calculate the gradient of E with 

respect to any weight 
𝛉𝐄

𝛉𝐰𝐢𝐣
 and any bias weight 

𝛉𝐄

𝛉𝐛𝐢𝐣
 in the ANN, which in turn will determine the 

degree to which the error will change if we change the weight values. We can then determine 
how much of such change we desire through a parameter η ∈ [0,1] called learning rate.  

In the absence of any information about the general shape of the function between the error and 
the weights but the existence of information about its gradient it appears that a gradient descent 
approach would seem to be a good fit for attempting to find the global minimum of the E 
function. Given the lack of information about the E function, the search can start from some 
random point in the weight space (i.e., random initial weight values) and follow the gradient 
towards lower E values. This process is repeated iteratively until we reach E values we are 
happy with or we run out of computational resources. More formally, the basic steps of the 
backpropagation algorithm are as follows:  

 

 

 

 

 

 

 



 

 

Limitations and Solutions 

It is worth noting that backpropagation is not guaranteed to find the global minimum of E 
given its local search (hill-climbing) property. Further, given its gradient-based (local) search 
nature, the algorithm fails to overcome potential plateaux areas in the error function landscape. 
As these are areas with near-zero gradient, crossing them results in near-zero weight updates and 
further in premature convergence of the algorithm. Typical solutions and enhancements of the 
algorithm to overcome convergence to local minima include: 

• Random restarts: One can rerun the algorithm with new random connection weight values in 
the hope that the ANN is not too dependent on luck. No ANN model is good if it depends too 
much on luck—for instance, if it performs well only in one or two out of ten runs. 

• Dynamic learning rate: One can either modify the learning rate parameter and observe changes 
in the performance of the ANN or introduce a dynamic learning rate parameter that increases 
when convergence is slow whereas it decreases when convergence to lower E values is fast. 

• Momentum: Alternatively, one may add a momentum amount to the weight up-date rule as 
follows: 

 



where m ∈ [0,1] is the momentum parameter and t is the iteration step of the weight update. The 

addition of a momentum value of the previous weight up-date ( a∆wij (t−1) ) attempts to help 
backpropagation to overcome a potential local minimum. While the above solutions are directly 
applicable to ANNs of small size, practical wisdom and empirical evidence with modern (deep) 
ANN architectures, however, suggests that the above drawbacks are largely eliminated.  


