
Neural Network - Supervised Learning

Supervised learning is the algorithmic process of approximating the underlying function between
labeled data and their corresponding attributes or features. A popular example of supervised
learning is that of a machine that is asked to distinguish between apples and pears (labeled data)
given a set of features or data attributes such as the fruits’ color and size. Initially, the machine
learns to classify between apples and pears by seeing a number of available fruit examples—
which contain the color and size of each fruit, on one hand, and their corresponding label (apple
or pear) on the other. After learning is complete, the machine should ideally be able to tell
whether a new and unseen fruit is a pear or an apple based solely on its color and size. Beyond
distinguishing between apples and pears supervised learning nowadays is used in a plethora of
applications including financial services, medical diagnosis, fraud detection, web page
categorization, image and speech recognition, and user modeling (among many).

Evidently, supervised learning requires a set of labeled training examples; hence supervised.
More specifically, the training signal comes as a set of supervised labels on the data (e.g., this is
an apple whereas that one is a pear) which acts upon a set of characterizations of these labels
(e.g., this apple has red color and medium size).

Formally, supervised learning attempts to derive a function f : X
examples {(x1 ,y1),...,(xN ,yN)}; where X and Y is the input and
the feature (input) vector of the i
supervised learning task has two core steps:

In the first training step, the training samples
and the function f between attributes and labels is derived.

In the second testing step f can
attributes. To validate the generali

Artificial Neural Networks

Artificial Neural Networks (ANNs)
and machine learning. An ANN
which was originally designed to model the way a biolog
neurons—processes information, operates, learns
neurons have a cell body, a number of den
axon which transmits electrochemical information outside the neuron

Formally, supervised learning attempts to derive a function f : X → Y, given a
)}; where X and Y is the input and output space, respectively;

the feature (input) vector of the i-th example and yi is its corresponding set of labels. A
arning task has two core steps:

training samples—attributes and corresponding labels
ttributes and labels is derived.

can be used to predict the labels of unknown data given their
generalizability of f.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are a bio-inspired approach for computational
 is a set of interconnected processing units (named neurons)

igned to model the way a biological brain—containing over 10
processes information, operates, learns and performs in several tasks. Biological
ve a cell body, a number of dendrites which bring information into the neuron a

trochemical information outside the neuron, as shown in Figure below

 set of N training
output space, respectively; xi is

is its corresponding set of labels. A

ibutes and corresponding labels are presented

the labels of unknown data given their

inspired approach for computational intelligence
units (named neurons)

containing over 1011
and performs in several tasks. Biological

drites which bring information into the neuron and an
, as shown in Figure below.

 The artificial neuron (see Figure below) resembles the biological neuron as it has a number of
inputs x (corresponding to the neuron dendrites) each with an associated weight parameter w
(corresponding to the synaptic strength). It also has a processing unit that combines inputs with
their corresponding weights via an inner product (weighted sum) and adds a bias (or threshold)
weight b to the weighted sum as follows: x·w+b. This value is then fed to an activation function
g (cell body) that yields the output of the neuron (corresponding to an axon terminal). ANNs are
essentially simple mathematical models defining a function f : x → y.

An illustration of an artificial neuron, the neuron is fed with the input vector x through n connections with
corresponding weight values w. The neuron processes the input by calculating the weighted sum of inputs
and corresponding connection weights and adding a bias weight (b): x·w+b. The resulting formula feeds

an activation function (g), the value of which defines the output of the neuron.

Core application areas include pattern recognition, robot and agent control, game-playing,
decision making, gesture, speech and text recognition, medical and financial applications,
affective modeling, and image recognition

Activation Functions

Which activation function should one use in an ANN? The original model of a neuron by
McCulloch and Pitts in 1943 featured a Heaviside step activation function (see Figure below)
which either allows the neuron to fire or not. When such neurons are employed and connected to
a multi-layered ANN the resulting network can merely solve linearly separable problems.

The algorithm that trains such ANNs was in
perceptron algorithm. Non linearly separable
only be solved after the invention of the

Nowadays, there are several activation functions
training. The use of the activation function, in turn, yields different types of ANNs.
include Gaussian activation function
sigmoid-shaped logistic function

1) It is bounded, monotonic and non

2) It is continuous and smooth and

3) Its derivative is calculated trivially
logistic function can be used in conjunction wit
back-propagation which is described below.

Other popular activation functions for training
rectifier—named rectified linear unit
approximation, the soft plus function

hm that trains such ANNs was invented in 1958 and is known as the
linearly separable problems such as the exclusive

the invention of the backpropagation algorithm in 1975.

are several activation functions used in conjunction with ANNs and their
ing. The use of the activation function, in turn, yields different types of ANNs.

Gaussian activation function. The most common function used for ANN training is the
shaped logistic function g(x) = 1/(1+e−x) for the following properties (see Figure

non-linear;

is continuous and smooth and

trivially as g’(x) = g(x)(1−g(x)). Given the properties above the
used in conjunction with gradient-based optimization algorithms such as

agation which is described below.

Other popular activation functions for training deep architectures of neural networks include th
ear unit (ReLU) when employed to a neuron—

function. Compared to sigmoid-shaped activation functions,

and is known as the Rosenblatt’s
exclusive OR gate could

ction with ANNs and their
ing. The use of the activation function, in turn, yields different types of ANNs. Examples

common function used for ANN training is the
see Figure):

−g(x)). Given the properties above the
ion algorithms such as

deep architectures of neural networks include the
—and its smooth

shaped activation functions, ReLUs

allow for faster and (empirically) more effective training of deep ANNs, which are
trained on large datasets.

From a Neuron to a Network

To form an ANN a number of neurons need to be structured and connected. While
ways have been proposed in the literature the most common of them all
layers. In its simplest form, known as the
are layered across one or more layers but
Figure below for a typical MLP structure).

The output of each neuron in each layer is connected to all the neurons
Note that a neuron’s output value feeds merely the neurons of
becomes their input. Consequently,
outputs of the ANN. The last layer of the ANN is
intermediate layers between the output
note that the inputs of the ANN,
illustrate this with an additional layer we call the
neurons as it only distributes the inputs to the first layer of neurons

1) Layered because they are grouped in layers;

2) Feed-forward because their connections are unidirectional and always forward (from a
previous layer to the next); and

3) Fully connected because every neuron is connected to all neurons

allow for faster and (empirically) more effective training of deep ANNs, which are

From a Neuron to a Network

To form an ANN a number of neurons need to be structured and connected. While
ways have been proposed in the literature the most common of them all is to structure neurons in
layers. In its simplest form, known as the multi-layer perceptron (MLP), neurons in an ANN
are layered across one or more layers but not connected to other neurons in the same layer (see

structure).

utput of each neuron in each layer is connected to all the neurons in the next layer
Note that a neuron’s output value feeds merely the neurons of the next layer and, thereby,
becomes their input. Consequently, the outputs of the neurons in the last layer

. The last layer of the ANN is also known as the output layer
intermediate layers between the output and the input are the hidden layers. It is important to

ANN, x, are connected to all the neurons of the first hidden layer
with an additional layer we call the input layer. The input layer does not contain

neurons as it only distributes the inputs to the first layer of neurons. In summary,

ayered because they are grouped in layers;

their connections are unidirectional and always forward (from a

connected because every neuron is connected to all neurons of the next

allow for faster and (empirically) more effective training of deep ANNs, which are generally

To form an ANN a number of neurons need to be structured and connected. While numerous
to structure neurons in

neurons in an ANN
not connected to other neurons in the same layer (see

in the next layer.
the next layer and, thereby,

neurons in the last layer are the
output layer whereas all

. It is important to
first hidden layer. We

The input layer does not contain
. In summary, MLPs are

their connections are unidirectional and always forward (from a

layer.

An MLP example with three inputs, one hidden layer containing four hidden neurons and two outputs.
The ANN has labeled and ordered neurons and example connection weight labels. Bias weights bj are not
illustrated in this example but are connected to each neuron j of the ANN.

Forward Operation

In the previous section we defined the core components of an ANN whereas in this section we
will see how we compute the output of the ANN when an input pattern is presented. The process
is called forward operation and propagates the inputs of the ANN throughout its
consecutive layers to yield the outputs. The basic steps of the forward operation are as follows:

1- Label and order neurons. We typically start numbering at the input layer and increment
the numbers towards the output layer (see above Figure). Note that the input layer does
not contain neurons, nevertheless is treated as such for numbering purposes only.

2- Label connection weights assuming that wij is the connection weight from neuron i (pre-
synaptic neuron) to neuron j (post-synaptic neuron). Label bias weights that connect to

neuron j as bj

3- Present an input pattern x.

4- For each neuron j compute its output as follows: αj = g(∑i {wij αi }+bj), where αj

and αi are, respectively, the output of and the inputs to neuron j (n.b. αi = xi in the

input layer); g is the activation function (usually the logistic sigmoid function).

5- The outputs of the neurons of the output layer are the outputs of the ANN.

How Does an ANN Learn?

How do we approximate f(x, w, b) so that the outputs of the ANN match the desired outputs
(labels) of our dataset, y? We will need a training algorithm that adjusts the weights (w and
b) so that f : x → y. A training algorithm as such requires two components:

 First, it requires a cost function to evaluate the quality of any set of weights.

Second, it requires a search strategy within the space of possible solutions (i.e., the weight
space).

Cost (Error) Function

Before we attempt to adjust the weights to approximate f, we need some measure of MLP
performance. The most common performance measure for training ANNs in a supervised
manner is the squared Euclidean distance (error) between the vectors of the actual output of
the ANN (α) and the desired labeled output (y).

where the sum is taken over all the output neurons (the neurons in the final layer). Note that the

yj labels are constant values and more importantly, also note that E is a function of all the
weights of the ANN since the actual outputs depend on them. As we will see below, ANN
training algorithms build strongly upon this relationship between error and weights.

Backpropagation

The backpropagation (or backprop) algorithm is based on gradient descent optimization and
is arguably the most common algorithm for training ANNs. Backpropagation stands for
backward propagation of errors as it calculates weight updates that minimize the error
function from the output to the input layer.

In a nutshell, backpropagation computes the partial derivative (gradient) of the error
function E with respect to each weight of the ANN and adjusts the weights of the ANN
following the (opposite direction of the) gradient that minimizes E.

As mentioned earlier, the squared Euclidean error depends on the weights as the ANN output
which is essentially the f (x; w, b) function. As such we can calculate the gradient of E with

respect to any weight
𝛉𝐄

𝛉𝐰𝐢𝐣
 and any bias weight

𝛉𝐄

𝛉𝐛𝐢𝐣
 in the ANN, which in turn will determine the

degree to which the error will change if we change the weight values. We can then determine
how much of such change we desire through a parameter η ∈ [0,1] called learning rate.

In the absence of any information about the general shape of the function between the error and
the weights but the existence of information about its gradient it appears that a gradient descent
approach would seem to be a good fit for attempting to find the global minimum of the E
function. Given the lack of information about the E function, the search can start from some
random point in the weight space (i.e., random initial weight values) and follow the gradient
towards lower E values. This process is repeated iteratively until we reach E values we are
happy with or we run out of computational resources. More formally, the basic steps of the
backpropagation algorithm are as follows:

Limitations and Solutions

It is worth noting that backpropagation is not guaranteed to find the global minimum of E
given its local search (hill-climbing) property. Further, given its gradient-based (local) search
nature, the algorithm fails to overcome potential plateaux areas in the error function landscape.
As these are areas with near-zero gradient, crossing them results in near-zero weight updates and
further in premature convergence of the algorithm. Typical solutions and enhancements of the
algorithm to overcome convergence to local minima include:

• Random restarts: One can rerun the algorithm with new random connection weight values in
the hope that the ANN is not too dependent on luck. No ANN model is good if it depends too
much on luck—for instance, if it performs well only in one or two out of ten runs.

• Dynamic learning rate: One can either modify the learning rate parameter and observe changes
in the performance of the ANN or introduce a dynamic learning rate parameter that increases
when convergence is slow whereas it decreases when convergence to lower E values is fast.

• Momentum: Alternatively, one may add a momentum amount to the weight up-date rule as
follows:

where m ∈ [0,1] is the momentum parameter and t is the iteration step of the weight update. The

addition of a momentum value of the previous weight up-date (a∆wij (t−1)) attempts to help
backpropagation to overcome a potential local minimum. While the above solutions are directly
applicable to ANNs of small size, practical wisdom and empirical evidence with modern (deep)
ANN architectures, however, suggests that the above drawbacks are largely eliminated.

