Backpropagation Example

In this example, the neural network has two inputs, two hidden neurons,
two output neurons. Additionally, the hidden and output neurons will
include a bias.

(o)

b1 b2

By assuming initial weights, the biases:

b1.35 b2 .60

The objective of backpropagation is to optimize the weights so that the
neural network can learn how to correctly map arbitrary inputs to outputs.

In this example, and for a single training: the given inputs 0.05 and 0.10,
so that the neural network to output 0.01 and 0.99.

The Feedforward Training

To begin, let's see what the neural network currently predicts given the
weights and biases above and inputs of 0.05 and 0.10. To do this we’ll
feed those inputs forward though the network.

We figure out the fotal net input to each hidden layer neuron, squash the
total net input using an activation function (here we use the sigmoid
function), then repeat the process with the output layer neurons.

netpy =wy*ip+wq *i9+ by %1
netyy =0.15%0.004+ 0.2%0.1 +0.30 % 1 = 0.377H
Then substitute it using the sigmoid function to get the output of h+:

L (503260002

i
14 METh] 1+

oty =

Carrying out the same process for h, we get
outys = (1.096884378

We repeat this process for the output layer neurons, using the output from
the hidden layer neurons as inputs.

net,; = wsy % outyy + wg * outps + by # 1
nety, = 0.4 = 0.593269992 4 0.45 = 0.5968843758 4 0.6 = 1 = 1.105905967

O”rﬂ] =]+r.—]:|:r:-.| =]_H.-I.I]..":'r..":.-!:-n = []?'_']136'?][]?

and carrying out the same process for 02 we get:

out ;5 = 0772928465

Calculating the Total Error

To calculate the error for each output neuron using the squared error
function and sum them to get the total error:

Eiotal = %[.fr.'r'_e,rr.f — output)

Some_sources refer to the target as the ideal and the output as
the actual.

For example, the target output for o1is 0.01, nevertheless the neural
network output 0.75136507, therefore its error is:

E,4 = %[ir.‘:'_{ﬁ tog — Outy) = %[l].l]l — 0.75136507)% = 0.274811083

Repeating this process for 02 (remembering that the target is 0.99) we get:
E,5 = 0.023560026
The total error for the neural network is the sum of these errors:

Eppat = Eoy + E,5 = 0.274811083 + 0.023560026 = 0.298371109

The Backpropagation Algorithm

Our goal with backpropagation is to update each of the weights in the
network so that they cause the actual output to be closer the target output,
thereby minimizing the error for each output neuron and the network as a
whole.

Output Layer

Consider ws:. We want to know how much a change in s affects the total

OE
error, aka —a“’“”

Ws

—aE:‘j“" is read as the partial derivative of E,,., Wwith respect to ws . Also,
5
called the gradient with respect to ws

Using chain rule:

';}L‘fﬂffi'f i "']Emm{ dJout 41 * dInety

Ows — dout gy dInet Ows,
Onety) o Oouty) | OFie _ OEjpa
o, el dout o chiry,

output
hi

w5

output E .1 = V(target 5, - out)?

Eitat =Ec1+*Eqz

We need to figure out each piece in this equation.

First, how much does the total error change with respect to the output?

2

R

=t %[a‘.ru'_qra‘f,g — (Jfft”g)

1 e
Eﬂm’u!’ = 3“(:’]‘_@'(#1’11 — O”t&!)

H =2% %[a‘ra.rg:-a‘m —out,y) x—140
A potar —I_r#r.'.:'_;;f-fm — ou#m}l = —[[}_[]1 — [].TﬁlSﬁJﬂﬂ = (1.74136507

Aoty

Next, how much does the output of 1 change with respect to its total net
input?

The partial derivative of the sigmoid function is the output multiplied by 1
minus the output:

out ;1 = Toenetal

doutal — ot (1 — out,,) = 0.75136507(1 — 0.75136507) = 0.186815602

dnetg)

Finally, how much does the total net input of ¢1 change with respect to
?

net, = wy % outyy +wg * outps + by * 1

dnetol —] % putyy * rI'_EJE_j: + 040 = outy,; = 0.083269992

Putting it all together:

% = (1.74136007 = 0.186815602 = (.593269992 = 0.0582167041

To decrease the error, we then subtract this value from the current weight
(optionally multiplied by some learning rate, eta, which we’ll set to 0.5):

wi = wy — i # Lotetal —) 4 — (.55 0.082167041 = 0.35891648

s

Some sources use a (alpha) to represent the learning rate, others use 7
(eta), and others even use ¢ (epsilon).

We can repeat this process to get the new weights wg, w,, and wg:
wi = 0.408666186
wt = 0.511301270
wi = (.561370121

We perform the actual updates in the neural network after we have the
new weights leading into the hidden layer neurons.

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for '
, wa, ws and wy

OE a1 0FEistal " douty) % dnety)
o) douty) dnety) oy
'j:_-.:...'.-" i E;, tal . |..fa|.'|f,| 1 T r_._[
i ol Y B
rJ'rr'l f!“,”h; R i T, !.h] 2 it 1
r”‘_.._ sal Jf‘__‘.] rﬂf"___n

|'Fql.'.|"_._| rllll.'.l".ll |iur1:l'.-;1

b1 b2

using similar process as the output layer, however slightly different to
account for the fact that the output of each hidden layer neuron contributes
to the output (and therefore error) of multiple output neurons We know

dE s
that euti: affects both out.: and out. therefore the w4t needs to take into
consideration its effect on the both output neurons:

dFs]
Starting with outsr:

JEol

We can calculate #=t.i using values we calculated earlier:

dnetsl

And @t js equal to ws:

net,) = wy * outyy + wg * outpg + by % 1

dnetel o
douty) iy = (.40

Plugging them in:

A Eo2
Following the same process for #ut.i, we get:

{Efml = —0.019049119
Therefore:

dnety)

O otal . douty)
Now that we have 7=t , we need to figure out 7= and then & for
each weight:

_ 1
O”#h! T]+|._—:|:F.l:|

SOl — oty (1 — outyy) = 0.59326999(1 — 0.59326999) = 0.241300709

ety

We calculate the partial derivative of the total net input to 1 with respect
to "ithe same as we did for the output neuron:

netyy = wy* iy Fwskig+ by 1

dnety) _ - =
W =11 = [].l.]'l..]

Putting it all together:
ratar — (),036350306 = 0.241300709 = 0.05 = 0.000438568

i

We can now update "'1:

wi = wy —n * LEtetat — (.15 — 0.5 0.000438568 = 0.149780716

il

Repeating this for wa, w3, and w:
wy = (119956143
wi = (.24975114
wi = (1.29950229

Finally, after updating all the weights, When the inputs (0.05 and 0.1) are
fed forward, the error on the network was 0.298371109. After this first
round of backpropagation, the total error is now down to 0.291027924. It
might not seem like much, but after repeating this process 10,000 times,
for example, the error collapse to 0.0000351085. At this point, when we
feed forward 0.05 and 0.1, the two outputs neurons generate
0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

