
Backpropagation Example 

 

In this example, the neural network has two inputs, two hidden neurons, 
two output neurons. Additionally, the hidden and output neurons will 
include a bias. 

 

By assuming initial weights, the biases: 

 

 



 

The objective of backpropagation is to optimize the weights so that the 
neural network can learn how to correctly map arbitrary inputs to outputs. 

In this example, and for a single training: the given inputs 0.05 and 0.10, 
so that the neural network to output 0.01 and 0.99. 

The Feedforward Training 

To begin, let’s see what the neural network currently predicts given the 
weights and biases above and inputs of 0.05 and 0.10. To do this we’ll 
feed those inputs forward though the network. 

We figure out the total net input to each hidden layer neuron, squash the 
total net input using an activation function (here we use the sigmoid 
function), then repeat the process with the output layer neurons. 
 

 

 

Then substitute it using the sigmoid function to get the output of h1: 

 

 

Carrying out the same process for h2 we get 

 

 

We repeat this process for the output layer neurons, using the output from 
the hidden layer neurons as inputs. 

 

 

 

and carrying out the same process for o2 we get: 

 

 



Calculating the Total Error 

To calculate the error for each output neuron using the squared error 
function and sum them to get the total error: 
 

 

 

Some sources refer to the target as the ideal and the output as 
the actual. 

 

For example, the target output for o1 is 0.01, nevertheless the neural 
network output 0.75136507, therefore its error is: 

 

 

Repeating this process for o2 (remembering that the target is 0.99) we get: 

 

The total error for the neural network is the sum of these errors: 

 

The Backpropagation Algorithm 

Our goal with backpropagation is to update each of the weights in the 
network so that they cause the actual output to be closer the target output, 
thereby minimizing the error for each output neuron and the network as a 
whole. 

Output Layer 

Consider . We want to know how much a change in  affects the total 

error, aka 
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𝝏𝑬𝒕𝒐𝒕𝒂𝒍

𝝏𝒘𝟓
 is read as the partial derivative of 𝐸௧௢௧௔௟  with respect to 𝑤ହ . Also, 

called the gradient with respect to 𝑤ହ 

Using chain rule: 

 

 

 

 

We need to figure out each piece in this equation. 

First, how much does the total error change with respect to the output? 

 

 

 

 

 

 

 

Next, how much does the output of  change with respect to its total net 
input? 



The partial derivative of the sigmoid function is the output multiplied by 1 
minus the output: 

 

 

Finally, how much does the total net input of  change with respect to 
? 

 

 

Putting it all together: 

 

To decrease the error, we then subtract this value from the current weight 
(optionally multiplied by some learning rate, eta, which we’ll set to 0.5): 

 

Some sources use 𝛼  (alpha) to represent the learning rate, others use 
(eta), and others even use 𝜖  (epsilon). 

 

We can repeat this process to get the new weights 𝑤଺, 𝑤଻, and 𝑤଼: 

 

 

 

We perform the actual updates in the neural network after we have the 
new weights leading into the hidden layer neurons. 



Hidden Layer 

Next, we’ll continue the backwards pass by calculating new values for 
, , , and  

 

 

 

 

 

using similar process as the output layer, however slightly different to 
account for the fact that the output of each hidden layer neuron contributes 
to the output (and therefore error) of multiple output neurons. We know 

that  affects both  and  therefore the  needs to take into 
consideration its effect on the both output neurons: 

 



Starting with : 

We can calculate  using values we calculated earlier: 

And  is equal to : 

 

 

Plugging them in: 

Following the same process for , we get: 

 

Therefore: 

Now that we have , we need to figure out  and then  for 
each weight: 

 

 

We calculate the partial derivative of the total net input to  with respect 
to the same as we did for the output neuron: 

 

 

Putting it all together: 

 

 

We can now update : 



 

Repeating this for , , and  

 

 

 

Finally, after updating all the weights, When the inputs (0.05 and 0.1) are 
fed forward, the error on the network was 0.298371109. After this first 
round of backpropagation, the total error is now down to 0.291027924. It 
might not seem like much, but after repeating this process 10,000 times, 
for example, the error collapse to 0.0000351085. At this point, when we 
feed forward 0.05 and 0.1, the two outputs neurons generate 
0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target). 


