
Genetic Algorithm

Genetic Algorithm is a type of local search that mimics evolution by taking a
population of strings which encode possible solutions and combines them based
on a fitness function to produce individuals that are more fit.

Genetic Algorithms are computer programs that evolve in ways that resemble
natural selection and can be applied to solve complex problems. Genetic
Algorithms are inspired by Darwin's theory about evolution.

Genetic algorithms are a type of optimization algorithm, meaning they are used
to find the optimal solution(s) to a given computational problem that maximizes
or minimizes a particular function.

A genetic algorithm (or GA) is a search technique used in computing to find true
or approximate solutions to optimization and search problems. GAs are a
particular class of evolutionary algorithms that use techniques inspired by
evolutionary biology such as inheritance, mutation, selection, and crossover
(also called recombination).

The evolution usually starts from a population of randomly generated
individuals and happens in generations.

In each generation, the fitness of every individual in the population is evaluated,
multiple individuals are selected from the current population (based on their
fitness) and modified to form a new population. The new population is used in
the next iteration of the algorithm
The algorithm terminates when either a maximum number of generations has
been produced, or a satisfactory fitness level has been reached for the
population.

Example:

Individual - Any possible solution

Population - Group of all individuals

Fitness – Target function that we are optimizing (each individual has a fitness)

Selection

Selection is the component which guides the algorithm to the solution by
preferring individuals with high fitness over low-fitted ones. It can be a
deterministic operation, but in most implementations, it has random
components.

Crossover

In sexual reproduction, as it appears in the real world, the genetic material of
the two parents is mixed when the gametes of the parents merge. Usually,
chromosomes are randomly split and merged, with the consequence that some
genes of a child come from one parent while others come from the other parents

This mechanism is called crossover. It is a very powerful tool for introducing new
genetic material and maintaining genetic diversity, but with the outstanding
property that good parents also produce well-performing children or even
better ones.

Basically, crossover is the exchange of genes between the chromosomes of the
two parents. In the simplest case, we can realize this process by cutting two
strings at a randomly chosen position and swapping the two tails. This process,

which we will call one-point crossover in the following, is visualized in Figure
below.

Mutation

The last ingredient of our simple genetic algorithm is mutation—the random
deformation of the genetic information of an individual by means of radioactive
radiation or other environmental influences. In real reproduction, the
probability that a certain gene is mutated is almost equal for all genes

GA applications in real world:

 Artificial Intelligence
 Automotive Design
 Computer Gaming
 Predicting Protein Structure
 Optimization Problems
 Music
 Business

The basic components common to almost all genetic algorithms are:

• a fitness function for optimization

• a population of chromosomes

• selection of which chromosomes will reproduce

• crossover to produce next generation of chromosomes

• random mutation of chromosomes in new generation

The fitness function is the function that the algorithm is trying to optimize. The
term chromosome refers to a numerical value or values that represent a
candidate solution to the problem that the genetic algorithm is trying to solve.

A genetic algorithm begins with a randomly chosen assortment of
chromosomes, which serves as the first generation (initial population). Then
each chromosome in the population is evaluated by the fitness function to test
how well it solves the problem at hand.

Now the selection operator chooses some of the chromosomes for reproduction
based on a probability distribution defined by the user. The fitter a chromosome
is, the more likely it is to be selected. For example, if f is a non-negative fitness
function, then the probability that chromosome 𝑓(𝑥) is chosen to reproduce
might be

P = ௙(௫)
∑௙(௫)

The crossover operator resembles the biological crossing over and
recombination of chromosomes in cell meiosis. This operator swaps a
subsequence of two of the chosen chromosomes to create two offspring

The mutation operator randomly flips individual bits in the new chromosomes
(turning a 0 into a 1 and vice versa).

Example: Maximizing a Function of One Variable

Consider the problem of maximizing the function

where x is allowed to vary between 0 and 31. To solve this using a genetic
algorithm, we must encode the possible values of x as chromosomes.

For this example, we will encode x as a binary integer of length 5. Thus, the
chromosomes for our genetic algorithm will be sequences of 0’s and 1’s with a
length of 5 bits and have a range from 0 (00000) to 31 (11111).

To begin the algorithm, we select an initial population of 10 chromosomes at
random. The resulting initial population of chromosomes is shown in Table 1.
Next, we take the x-value that each chromosome represents and test its fitness
with the fitness function. The resulting fitness values are recorded in the third
column of Table 1.

Since our population has 10 chromosomes and each ‘mating’ produces 2
offspring, we need 5 matings to produce a new generation of 10 chromosomes.
The selected chromosomes are displayed in Table 2. To create their offspring, a

crossover point is chosen at random, which is shown in the table as a vertical
line.

Example:

Consider the problem of finding the global maximum of the following function:

Of course, the solution is obvious, but the simplicity of this problem allows us to
compute some steps by hand in order to gain some insight into the principles
behind genetic algorithms.

let us assume that a population size of m = 4, we obtain the following in the first
step:

One can compute easily that the sum of fitness values is 1170, where the
average is 293 and the maximum is 576. We see from the last column in which
way proportional selection favours high-fitted individuals (such as no. 2) over
low-fitted ones (such as no. 3)

From the results, that individuals no. 1 and no. 4 are selected for the new
generation, while no. 3 dies and no. 2 is selected twice, and we obtain the
second generation as follows:

So, we obtain a new generation with a sum of fitness values of 1754, an average
of 439, and a maximum of 729. We can see from this very basic example in which
way selection favours high-fitted individuals and how crossover of two parents

can produce an offspring which is even better than both of its parents. It is left
to the reader as an exercise to continue this example.

Example: the MAX - ONE problem

Suppose we want to maximize the number of ones in a string of l binary digits
start with a population of n random strings. Suppose that l = 10 and n = 6
initial population:

Suppose that, after performing selection, we get the following population:

Step 2: crossover
Before crossover:

After crossover:

Step 3: mutations

The final step is to apply random mutations: for each bit that we are to copy to
the new population we allow a small probability of error (for instance 0.1)

And now, iterate … In one generation, the total population fitness changed from
34 to 37, thus improved by roughly 9%. At this point, we go through the same
process all over again, until a stopping criterion is met

GA Applications

Introduction to fuzzy logic

Fuzzy logic is an extension of Boolean logic by Lotfi Zadeh in 1965 based on the
mathematical theory of fuzzy sets, which is a generalization of the classical set
theory.

By introducing the notion of degree in the verification of a condition, thus
enabling a condition to be in a state other than true or false, fuzzy logic provides
a very valuable flexibility for reasoning, which makes it possible to take into
account inaccuracies and uncertainties. One advantage of fuzzy logic in order to
formalize human reasoning is that the rules are set in natural language. For
example, here are some rules of conduct that a driver follows, assuming that he
does not want to lose his driver’s licence:

