
Lecture 3:
Processes & Threads

3.2

Agenda

PART 1: Processes

3.1 Process Concept

3.2 Process Parts

3.3 Process States

3.4 Process Control Block (PCB)

3.5 CPU Switch From Process to Process

3.6 Process Scheduling Queues

3.7 Operations on Processes

3.8 Inter-process Communication

3.3

Agenda

PART 2: Threads

3.9 Thread Concept

3.10 Multithreaded Server Architecture Example

3.11 Multithreading Benefits

3.12 Multi-Processor Systems

3.13 Concurrency vs. Parallelism

3.14 Amdahl’s Law

3.4

General Definition of a Process?

PART 1
Processes

3.6

3.1 Process Concept in OS

�Process – is an active program in
execution; process execution must
progress in sequential fashion

�Program is a passive entity stored on

disk (executable file), and it becomes a

process when executable file is loaded

into memory

�One program can be executed multiple

times generating multiple processes

3.7

Practical Case
Process Explorer (Freeware)

� It is a freeware shows a list of the currently active
processes,

� In DLL mode you'll see the DLLs and memory-
mapped files that the process has loaded.

� It is useful for tracking down DLL problems and
provide insight into the way Windows and
applications work.

3.8

3.2 Process Parts

� Text Section containing

the program code.

� Data section containing

global variables

� Stack containing

function parameters,

return addresses, and

local variables.

� Heap containing

memory dynamically

allocated during run

time.

3.9

3.3 Process States

� As a process executes, it changes state to below five

states

� new: The process is being created

� running: Instructions are being executed

� waiting: The process is waiting for some event to occur

� ready: The process is waiting to be assigned to a

processor

� terminated: The process has finished execution

3.10

Diagram of Process States

3.11

Analogy CPU vs. Doctor
(not required in the exam)

Process 1 Process 2
Process 3

3.12

3.4 Process Control Block (PCB)

Is the Information associated with each process

� Process state

� Program counter – location of instruction to next execute

� CPU registers

� CPU scheduling information- priorities, scheduling queue pointers

� Memory-management information – memory allocated to the process

� Accounting information – CPU used, clock time elapsed since start, and

time limits

� I/O status information – I/O devices allocated to process, and list of open

files

3.13

3.5 CPU Switch From Process to Process

3.14

3.6 Process Scheduling Queues

� Process scheduler selects among available processes

for next execution on CPU

� Maintains scheduling queues of processes

� Job queue – set of all processes in the system

� Ready queue – set of all processes residing in main

memory, ready and waiting to execute

� Device queues – set of processes waiting for an I/O

device

� Processes migrate among the various queues

3.15

Process Scheduling Queues Diagram

3.16

3.7 Operations on Processes
1) Process Creation

� Parent process create children processes, which, in

turn create other processes, forming a tree of processes

� Generally, process identified and managed via a

process identifier (pid)

� Resource sharing options:

1. Parent and children share all resources

2. Children share subset of parent’s resources

3. Parent and child share no resources

� Execution options:

1. Parent and children execute concurrently

2. Parent waits until children terminate

3.17

Examples of Tree of Processes
(not required in the exam)

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

3.18

2. Process Termination

� Process executes last statement and then asks

the operating system to delete it using a system

call.

� Returns status data from child to parent

� Process’ resources are de-allocated by
operating system

� Parent may terminate the execution of children

processes using a system call. Some reasons

for doing so:

� Child has exceeded allocated resources

� Task assigned to child is no longer required

� The parent is exiting

3.19

3.8 Inter-process Communication

� Processes within a system may be independent or

cooperating when they need to share data

� There are two models of inter-process communications
(IPC)

• Shared memory

• Message passing

3.20

Inter-Process Communications Models

(a) Message passing. (b) shared memory.

PART 2
Threads

3.22

3.9 Thread Concept
� The thread is a component of the process and it is the

smallest sequence of instructions that can be managed by

the scheduler

� Multiple threads can exist within one process,

executing concurrently and sharing resources such

as memory.

� Implicit Threading where the creation and management of

threads done by compilers rather than programmers.

� Most modern applications are multithreaded, so tasks with

the application can be implemented by separate threads

� Update display

� Fetch data

� Spell checking

3.23

Single and Multithreaded Processes
(not required in the exam)

3.24

Multi-threaded Process Analogy

3.25

3.10 Multithreaded Server
Architecture Example

3.26

3.11 Multithreading Benefits

� Responsiveness – may allow continued

execution if part of process is blocked, especially

important for user interfaces

� Resource Sharing – threads share resources of

process, easier than shared memory or message

passing

� Economy – cheaper than process creation,

thread switching lower overhead than context

switching

� Scalability – process can take advantage of

multiprocessor architectures

3.27

3.12 Multi-Processor Systems

� The systems can have single

processor or multiple

processors

� A system can have

independent CPUs in single

motherboard

� A multi-core processor is one

which combines two or more

independent processors into

a single chip.

3.28

3.13 Concurrency vs. Parallelism

� Concurrency supports more than one task making

progress, this can be implemented by a Single

processor / core with a scheduler.

� Parallelism implies a system can perform more than

one task simultaneously on multi-core system

3.29

3.14 Amdahl’s Law

� This law Identifies performance gains from adding

additional cores to an application that has both serial

and parallel components

� P is parallel portion

� S is serial portion

S = 1 - P

� N processing cores

� As N approaches infinity, speedup approaches 1 / S

� Serial portion of an application is limiting the
performance gained by adding additional cores

� Adding more processors leads to successively smaller

returns in terms of speedup

3.30

Amdahl’s Law Graph
(not required in the exam)

3.31

Amdahl’s Law Example

