
Lecture 3:  
Processes & Threads
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General Definition of a Process?



PART 1
Processes
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3.1 Process Concept in OS

�Process – is an active program in 
execution; process execution must 
progress in sequential fashion

�Program is a passive entity stored on 

disk (executable file), and it becomes a 

process when executable file is loaded 

into memory

�One program can be executed multiple 

times generating multiple processes
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Practical Case 
Process Explorer  (Freeware)

� It is a freeware shows a list of the currently active 
processes, 

� In DLL mode you'll see the DLLs and memory-
mapped files that the process has loaded.

� It is useful for tracking down DLL problems and 
provide insight into the way Windows and 
applications work.
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3.2 Process Parts

� Text Section containing 

the program code.

� Data section containing 

global variables

� Stack containing 

function parameters, 

return addresses, and 

local variables.

� Heap containing 

memory dynamically 

allocated during run 

time.
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3.3 Process States

� As a process executes, it changes state to below five 

states

� new:  The process is being created

� running:  Instructions are being executed

� waiting:  The process is waiting for some event to occur

� ready:  The process is waiting to be assigned to a 

processor

� terminated:  The process has finished execution
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Diagram of Process States
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Analogy CPU vs. Doctor
(not required in the exam)

Process 1 Process 2
Process 3
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3.4 Process Control Block (PCB)

Is the Information associated with each process 

� Process state 

� Program counter – location of instruction to next execute

� CPU registers

� CPU scheduling information- priorities, scheduling queue pointers

� Memory-management information – memory allocated to the process

� Accounting information – CPU used, clock time elapsed since start, and 

time limits

� I/O status information – I/O devices allocated to process, and list of open 

files
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3.5 CPU Switch From Process to Process
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3.6 Process Scheduling Queues

� Process scheduler selects among available processes 

for next execution on CPU

� Maintains scheduling queues of processes

� Job queue – set of all processes in the system

� Ready queue – set of all processes residing in main 

memory, ready and waiting to execute

� Device queues – set of processes waiting for an I/O 

device

� Processes migrate among the various queues
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Process Scheduling Queues Diagram
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3.7 Operations on Processes 
1) Process Creation

� Parent process create children processes, which, in 

turn create other processes, forming a tree of processes

� Generally, process identified and managed via a

process identifier (pid)

� Resource sharing options:

1. Parent and children share all resources

2. Children share subset of parent’s resources

3. Parent and child share no resources

� Execution options:

1. Parent and children execute concurrently

2. Parent waits until children terminate
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Examples of Tree of Processes
(not required in the exam)

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298
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2. Process Termination

� Process executes last statement and then asks 

the operating system to delete it using a system 

call.

� Returns  status data from child to parent

� Process’ resources are de-allocated by 
operating system

� Parent may terminate the execution of children 

processes  using a system call.  Some reasons 

for doing so:

� Child has exceeded allocated resources

� Task assigned to child is no longer required

� The parent is exiting
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3.8 Inter-process Communication

� Processes within a system may be independent or 

cooperating when they need to share data

� There are two models of inter-process communications 
(IPC) 

• Shared memory

• Message passing
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Inter-Process Communications Models 

(a) Message passing.  (b) shared memory. 



PART 2
Threads
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3.9 Thread Concept
� The thread is a component of the process and it is the 

smallest sequence of instructions that can be managed by 

the scheduler

� Multiple threads can exist within one process, 

executing concurrently and sharing resources such 

as memory.

� Implicit Threading where the creation and management of 

threads done by compilers rather than programmers.

� Most modern applications are multithreaded, so tasks with 

the application can be implemented by separate threads

� Update display

� Fetch data

� Spell checking
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Single and Multithreaded Processes
(not required in the exam)
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Multi-threaded Process Analogy
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3.10 Multithreaded Server 
Architecture Example
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3.11 Multithreading Benefits

� Responsiveness – may allow continued 

execution if part of process is blocked, especially 

important for user interfaces

� Resource Sharing – threads share resources of 

process, easier than shared memory or message 

passing

� Economy – cheaper than process creation, 

thread switching lower overhead than context 

switching

� Scalability – process can take advantage of 

multiprocessor architectures
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3.12 Multi-Processor Systems

� The systems can have single 

processor or multiple 

processors

� A system can have 

independent CPUs in single 

motherboard

� A multi-core processor is one 

which combines two or more 

independent processors into 

a single chip.
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3.13 Concurrency vs. Parallelism

� Concurrency supports more than one task making 

progress, this can be implemented by a Single 

processor / core with a scheduler.

� Parallelism implies a system can perform more than 

one task simultaneously on multi-core system
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3.14 Amdahl’s Law

� This law Identifies performance gains from adding 

additional cores to an application that has both serial 

and parallel components

� P is parallel portion 

� S is serial portion

S = 1 - P

� N processing cores

� As N approaches infinity, speedup approaches 1 / S

� Serial portion of an application is limiting the 
performance gained by adding additional cores

� Adding more processors leads to successively smaller 

returns in terms of speedup
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Amdahl’s Law Graph
(not required in the exam)
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Amdahl’s Law Example


