
Database Systems I

1

Chapter 1: Introduction to Database

What is DBMS?:

DBMS is a ccollection of interrelated data and a set of programs to access the data. It

provide an environment that is both convenient and efficient to use.

Applications of DBMS

Following are the list of applications of DBMS:

 Banking: transactions

 Airlines: reservations, schedules

 Universities: registration, grades

 Sales: customers, products, purchases

 Online retailers: order tracking, customized recommendations

 Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax deductions

University Database Example:

 Application program examples

o Add new students, instructors, and courses

o Register students for courses, and generate class rosters

o Assign grades to students, compute grade point averages (GPA) and

generate transcripts

 In the early days, database applications were built directly on top of file systems

Database Systems I

2

POS System Database Example:

Database Systems I

3

Simple Database Example:

Apps without Database:

Database Systems I

4

Drawbacks of using file systems to store data:

Following are the drawbacks of File System:

 Data redundancy and inconsistency: Multiple file formats, duplication of

information in different files

 Difficulty in accessing data: Need to write a new program to carry out

each new task

 Data isolation: multiple files and formats

 Integrity problems: Hard to add new constraints or change existing ones

 Atomicity of updates: Failures may leave database in an inconsistent state

with partial updates carried out

 Concurrent access by multiple users: Concurrent access needed for

performance

 Security problems: Hard to provide user access to some, but not all, data.

Database systems offer solutions to all the above problems

Levels of Abstraction:

 Physical level: describes how a record (e.g., customer) is stored.

 Logical level: describes data stored in database, and the relationships among the

data.

o type instructor = record

 ID : string;

 name : string;

 dept_name : string;

 salary : integer;

 end;

 View level: application programs hide details of data types. Views can also hide

information (such as an employee’s salary) for security purposes.

View of Data:

An Architecture for a Database System:

Database Systems I

5

Data Models:

 Data models define how the logical structure of a database is modelled. Data

Models are fundamental entities to introduce abstraction in a DBMS.

 Data models define how data is connected to each other and how they are

processed and stored inside the system.

 Data Model is a collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints.

 A data model provides a way to describe the design of a database at the physical,

logical, and view levels.

The data models can be classified into four different categories:

 Relational Model. The relational model uses a collection of tables to represent

both data and the relationships among those data.

 Entity-Relationship Model. The entity-relationship (E-R) data model uses a

collection of basic objects, called entities, and relationships among these objects.

 Object-Based Data Model. Object-oriented programming (especially in Java, C++,

or C#) has become the dominant software-development methodology.

 Semi-structured Data Model. The semi-structured data model permits the

specification of data where individual data items of the same type may have

different sets of attributes.

Historically, the network data model and the hierarchical data model preceded the

relational data model. These models were tied closely to the underlying implementation,

and complicated the task of modelling data.

Relational Model:

• The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple columns, and each column

has a unique name.

• Tables are also known as relations.

• The relational model is an example of a record-based model.

• Record-based models are so named because the database is structured in fixed-

format records of several types. Each table contains records of a particular type.

• Each record type defines a fixed number of fields, or attributes.

• The columns of the table correspond to the attributes of the record type.

• The relational data model is the most widely used data model, and a vast majority

of current database systems are based on the relational model.

Database Systems I

6

Example of tabular data in the relational model:

A Sample Relational Database:

Database Systems I

7

Relational DBMS:

• A database management system that stores data in the form of related tables is

called Relational Database Management System.

• Edgar F. Codd at IBM invented the relational database in 1970.

• Relational databases help solve problems as they are designed to create tables &

then combine the information in interesting ways to create valid information.

Typical example of Relational DBMS.

Typical examples of Relational DBMS are:

 Microsoft Access

 Microsoft SQL Server

 Sybase

 IBM DB2

 Oracle

 Ingres

 MySQL

 PostgreSQL

Database Schema:

• A database schema is a way to logically group objects such as tables, views, stored

procedures etc.

• Think of a schema as a container of objects.

Database Systems I

8

Chapter 2: Database Design Process

A database design process:

 Step 1: Define the Purpose of the Database (Requirement Analysis)

o This helps prepare for the remaining steps.

o Gather all of the types of information to record in the database, such as

product name and order number.

 Step 2: Find and organize the information required

o Divide information items into major entities or subjects, such as Products

or Orders.

o Each subject then becomes a table.

 Step 3: Gather Data, Organize in tables and Specify the Keys

o Decide what information needs to be stored in each table.

o Each item becomes a field, and is displayed as a column in the table.

o Choose each table’s primary key. The primary key is a column, or a set of

columns, that is used to uniquely identify each row

 Step 4: Create Relationships among Tables

o Look at each table and decide how the data in one table is related to the

data in other tables.

 Step 5: Refine & Normalize the Design

o Apply the so-called normalization rules to check whether your database is

structurally correct and optimal.

Normalization:

 Normalization is the process of organizing the data in the

database. Normalization is used to minimize the redundancy from a relation or set

of relations.

 It is also used to eliminate the undesirable characteristics like Insertion, Update

and Deletion Anomalies.

First Normal Form (1NF):

A table is 1NF if every cell contains a single value, not a list of values. This properties is

known as atomic. 1NF also prohibits repeating group of columns such as item1, item2,..,

item N. Instead, you should create another.

Database Systems I

9

Second Normal Form (2NF):

A table is 2NF, if it is 1NF and every non-key column is fully dependent on the primary

key. Furthermore, if the primary key is made up of several columns, every non-key

column shall depend on the entire set and not part of it.

Third Normal Form (3NF):

A table is 3NF, if it is 2NF and the non-key columns are independent of each other’s. In

other words, the non-key columns are dependent on primary key, only on the primary

key and nothing else.

Unique Values and Primary Keys:

 Almost all table in a database require a key.

 The key is a way to identify just one particular row in a table

 A key is used to guarantee a unique column for a row

 If one of the column is defined as containing a unique value even if there were a

million rows in this table, the same value cannot occur more than once in that

column.

 Most of your columns don’t need to be unique and shouldn’t be.

 But some of the columns must be unique like Social Security Numbers or ISBN

Numbers of books

Database Systems I

10

 This kind of data are naturally unique and there should never be duplicates

 But much of the time there isn’t one piece of naturally unique data.

 So you will make one instead. You will tell the database to generate a unique

column.

 Most DBMSs help you to generate those kind of columns with these kind of

values.

 These column refers to Primary Key.

What is Primary Key?:

A primary key is a special relational database table column (or combination of columns)

designated to uniquely identify all table records. A primary key's main features are: It must

contain a unique value for each row of data. It cannot contain null values.

Database Systems I

11

Defining Relationships:

 Any Database begins with defining tables, vital next step is add relationships

among tables.

 Because much of your data is naturally connected.

 You are not trying to invent relationships that don’t exist. You are trying to

describe what’s already there.

Insert Anomaly:

• Primary key conflict

• Multiple copy of data

Database Systems I

12

Update Anomaly:

• Difficulty in updating all the data that’s related to each other.

Delete Anomaly:

• What will happen if we delete student 222

• Deleting a row will delete all the records exist in that row.

What is the Solution??

 Separate them into two tables

Relationship:

A relationship, in the context of databases, is a situation that exists between two

relational database tables when one table has a foreign key that references the primary

key of the other table.

The various types of Relationship are:

 One-to-One

 One-to-Many

 Many-to-Many

One-to-One Relationship:

In a one-to-one relationship, one record in a table is associated with one and only one

record in another table.

For example, in a school database, each student has only one student ID, and each

student ID is assigned to only one person.

Database Systems I

13

One-to-Many Relationship:

In a one-to-many relationship, one record in a table can be associated with one or more

records in another table.

For Example, One department can have Many students. So the relation is One-to-Many

between department and student table

Information about student and department are different but they are related to each

other. So we need to formally describe relationships between our tables

Database Systems I

14

 dID in Student table is not a primary key but Foreign Key and it is not unique.

What is Foreign Key?:

A foreign key is a column or group of columns in a relational database table that provides

a link between data in two tables. It acts as a cross-reference between tables because it

references the primary key of another table, thereby establishing a link between them.

 Either we can go from the Department row or get dID then go to Student table and

get all students of the department.

 Or we can go from the Student row and get dID then go to Department table and

find which student is associated with that department

 It is very common to have this kind of relations between your tables.

 This kind of relation is called one to many

Database Systems I

15

Many-to-Many Relationship:

A many-to-many relationship occurs when multiple records in a table are associated with

multiple records in another table.

 It is not unusual to sometimes needed to describe a many to many relationship.

 We’ve got 2 problems here:

 If there are students for one or more course, we will create the relationship by

adding sID column to Course Table

 So far, so good. But here is issue:

 What happens if a course is taken by two or more different students.

 The way we have this describe right now, we can’t do that.

 We need a many to many relationship.

 One student can take many courses but also a course can be taken by many

students.

 Some people try this model, adding another column to the Book table.

 However, adding new columns to your table means repeating same information

again.

 This is a bad idea and it is discouraged in database design.

Database Systems I

16

 So we’ll get rid of that technique.

 Some other people think to cheat little bit. Something quick and dirty: Adding two

values into that sID column

 Now AuthorID relates two author, But this’s also cheat like adding a new column.

This is highly discouraged as well.

 So how do we solve this?

 We go back to old tables with no official reference between them.

 What we do to create many to many relationship is we add another table.

 Only reason for this table to exist is to join the Author table and the Book table

together.

 We set up two one to many relationship.

 By using this we can go from Student to StudentCourse, find a cID and map that to

Course table.

Database Systems I

17

 We can also do it the other way

 Officially there is another relationship.

 One to one, but it’s not common

Database Systems I

18

Chapter 3: Constraints and Queries

About MS-Access:

Microsoft Access is a Database Management System (DBMS) from Microsoft that

combines the relational Microsoft Jet Database Engine with a graphical user interface and

software development tools. It is a member of the Microsoft Office suite of applications,

included in the professional and higher editions.

MS Access uses “objects" to help the user list and organize information, as well as
prepare specially designed reports. When you create a database, Access offers you
Tables, Queries, Forms, Reports, Macros, and Modules. Databases in Access are
composed of many objects but the following are the major objects −

 Tables

 Queries

 Forms

 Reports

Together, these objects allow you to enter, store, analyze, and compile your data.

MS-Access Data Types:

Every field in a table has properties and these properties define the field's characteristics

and behaviour. The most important property for a field is its data type. A field's data type

determines what kind of data it can store. MS Access supports different types of data,

each with a specific purpose.

 The data type determines the kind of the values that users can store in any given

field.

 Each field can store data consisting of only a single data type.

Here are some of the most common data types you will find used in a typical Microsoft

Access database.

Type of Data Description Size

Short Text

Text or combinations of text and
numbers, including numbers that do
not require calculating (e.g. phone
numbers).

Up to 255 characters.

Long Text
Lengthy text or combinations of text
and numbers.

Up to 63, 999 characters.

Database Systems I

19

Number
Numeric data used in mathematical
calculations.

1, 2, 4, or 8 bytes (16
bytes if set to Replication
ID).

Date/Time
Date and time values for the years 100
through 9999.

8 bytes

Currency

Currency values and numeric data
used in mathematical calculations
involving data with one to four decimal
places.

8 bytes

AutoNumber

A unique sequential (incremented by
1) number or random number
assigned by Microsoft Access
whenever a new record is added to a
table.

4 bytes (16 bytes if set to
Replication ID).

Yes/No
Yes and No values and fields that
contain only one of two values
(Yes/No, True/False, or On/Off).

1 bit.

 If you use previous versions of Access, you will notice a difference for two of those
data types.

 In Access 2013, we now have two data types — short text and long text. In
previous versions of Access these data types were called text and memo.

 The text field is referred to as short text and your memo field is now called long
text.

Here are some of the other more specialized data types, you can choose from in Access.

Data Types Description Size

Attachment

Files, such as digital photos.
Multiple files can be attached per
record. This data type is not
available in earlier versions of
Access.

Up to about 2 GB.

OLE
objects

OLE objects can store pictures,
audio, video, or other BLOBs
(Binary Large Objects)

Up to about 2 GB.

Hyperlink
Text or combinations of text and
numbers stored as text and used as
a hyperlink address.

Up to 8,192 (each part of a
Hyperlink data type can
contain up to 2048 characters).

Database Systems I

20

Lookup
Wizard

The Lookup Wizard entry in the
Data Type column in the Design
view is not actually a data type.
When you choose this entry, a
wizard starts to help you define
either a simple or complex lookup
field.
A simple lookup field uses the
contents of another table or a value
list to validate the contents of a
single value per row. A complex
lookup field allows you to store
multiple values of the same data
type in each row.

Dependent on the data type of
the lookup field.

Calculated

You can create an expression that
uses data from one or more fields.
You can designate different result
data types from the expression.

You can create an expression
that uses data from one or
more fields. You can designate
different result data types from
the expression.

Attribute Constraints and Properties:

Database Systems I

21

Input Mask:

An input mask is a string of characters that indicates the format of valid input values. You
can use input masks in table fields, query fields, and controls on forms and reports. The
input mask is stored as an object property.

You use an input mask when it’s important that the format of the input values is
consistent. For example, you might use an input mask with a field that stores phone
numbers so that Access requires ten digits of input. If someone enters a phone number
without the area code, Access won’t write the data until the area code data is added.

0 for required numbers from 0-9 and 9 for optional numbers from 0-9

L for required characters from A-Z

C or ? for optional numbers from A-Z

Database Systems I

22

Characters that define input masks

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

Input Mask Examples:

Validation Rule:

You can vet or validate data in Access desktop databases as you enter it by using

validation rules. You can use the expression builder to help you format the rule correctly.

Validation rules can be set in either table design or table datasheet view. There are three

types of validation rules in Access:

1. Field Validation Rule: You can use a field validation rule to specify a criterion that all

valid field values must meet.

2. Record Validation Rule: You can use a record validation rule to specify a condition

that all valid records must satisfy.

3. Validation on a form: You can use the Validation Rule property of a control on a form

to specify a criterion that all values input to that control must meet.

Database Systems I

23

Validation Rule Examples:

<= Date() Todays date or earlier date is acceptable only

>= 1 and <=10 number must be between 1 and 10

Database Systems I

24

Basic Query Structure:

Data Manipulation Language (DML):

The SQL data-manipulation language (DML) provides the ability to query information

like select, insert, delete and update tuples.

A typical SQL query has the form:

 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

Ai represents an attribute

Ri represents a relation

P is a predicate.

The result of an SQL query is a relation.

The Select Clause:

The select clause list the attributes desired in the result of a query corresponds to the

projection operation of the relational algebra

Example: find the names of all instructors:

 select name

 from instructor

NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)

 E.g. Name ≡ NAME ≡ name

 Some people use upper case wherever we use bold font.

Example: find the names of all departments:

 select dName, Building

 from Department

or

 select Department.dName, Department.Building

 from Department

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct after select.

 Find the names of all departments with instructor, and remove duplicates

Database Systems I

25

select distinct dept_name

 from instructor

 The keyword all specifies that duplicates not be removed.

select all dName

 from Department

 An asterisk in the select clause denotes “all attributes”

select *

from instructor

 The select clause can contain arithmetic expressions involving the operation, +, –

, *, and /, and operating on constants or attributes of tuples.

 The query:

select ID, name, salary/12

 from instructor

 would return a relation that is the same as the instructor relation, except that the

value of the attribute salary is divided by 12.

The Where Clause:

 The where clause specifies conditions that the result must satisfy Corresponds to

the selection predicate of the relational algebra.

 To find all Students with Age of 24

select ID, sName, Age

 from Student

 where Age = 24

 Comparison results can be combined using the logical connectives and, or, and not.

 Comparisons can be applied to results of arithmetic expressions.

 The where clause specifies conditions that the result must satisfy

o Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept with salary > 80000

select name

 from instructor

 where dept_name = ‘Comp. Sci.' and salary > 80000

 Comparison results can be combined using the logical connectives and, or, and

not.

 Comparisons can be applied to results of arithmetic expressions.

Database Systems I

26

The From Clause:

 The from clause lists the relations involved in the query

o Corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product instructor X teaches

select *

from instructor, teaches

o generates every possible instructor – teaches pair, with all attributes from

both relations

 Cartesian product not very useful directly, but useful combined with where-clause

condition

Cartesian Product: instructor × teaches:

Joins:

 For all instructors who have taught some course, find their names and the course

ID of the courses they taught.

select name, course_id

 from instructor, teaches

 where instructor.ID = teaches.ID

 Find the course ID, semester, year and title of each course offered by the Comp.

Sci. department

Database Systems I

27

select section.course_id, semester, year, title

 from section, course

 where section.course_id = course.course_id and

 dept_name = ‘Comp. Sci.'

Example:

List the names of instructors along with the course ID of the courses that they taught.

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID;

The Rename Operation:

The SQL allows renaming relations and attributes using the as clause:

 old-name as new-name

E.g.

select ID, name, salary/12 as monthly_salary

from instructor

Find the names of all instructors who have a higher salary than some instructor in ‘Comp.

Sci’.

select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

Keyword as is optional and may be omitted

 instructor as T ≡ instructor T

Keyword as must be omitted in Oracle

String Operations:

SQL includes a string-matching operator for comparisons on character strings. The

operator “like” uses patterns that are described using special characters:

percent (*). The * character matches any substring.

Find the names of all instructors whose name includes the substring “dar”.

Database Systems I

28

select name

 from instructor

 where name like ‘*dar*‘

Ordering the Display of Tuples:

List in alphabetic order the names of all instructors

 select distinct name

 from instructor

 order by name

We may specify desc for descending order or asc for ascending order, for each attribute;

ascending order is the default.

Example: order by name desc

Can sort on multiple attributes

Example: order by dept_name, name

Where Clause Predicates:

SQL includes a between comparison operator

Example: Find the names of all instructors with salary between $90,000 and $100,000

(that is, >=$90,000 and <=$100,000)

select name

 from instructor

 where salary between 90000 and 100000

Null Values:

It is possible for tuples to have a null value, denoted by null, for some of their attributes

null signifies an unknown value or that a value does not exist.

The predicate is null can be used to check for null values.

Example: Find all instructors whose salary is null.

Database Systems I

29

 select name

 from instructor

 where salary is null

Aggregate Functions:

These functions operate on the multiset of values of a column of a relation, and return a

value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

Find the average salary of instructors in the Computer Science department

select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

Find the total number of instructors who teach a course in the Spring 2010 semester

select count (ID)

from teaches

where semester = ’Spring’ and year = 2010

Find the number of tuples in the course relation

select count (*)

from course;

Find the average salary of instructors in each department

select dept_name, avg (salary)

from instructor

group by dept_name;

Note: departments with no instructor will not appear in result

Database Systems I

30

Null Values and Aggregates:
Total all salaries

 select sum (salary)

 from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values on the

aggregated attributes

What if collection has only null values?

 count returns 0

 all other aggregates return null

Database Systems I

31

Chapter 4: Queries

Data Definition Language:

The SQL data-definition language (DDL) allows the specification of information about

relations, including:

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 Creating and editing databases

 Creating and editing tables

Modification of the Database:

 Deletion of tuples from a given relation

 Insertion of new tuples into a given relation

 Updating values in some tuples in a given relation

Modification of the Database – Insertion:

A typical SQL insert query has the form:

 insert into r (Ai)

 values vi

 Ai represents an attribute

 r represents a relation

 v is values to be inserted

Examples:

 Add a new tuple to course

insert into department

 values (6, ’IT’, ’B1’, 24000);

 Add a new tuple to department with building set to null

insert into department

 values (7, ’Civil’, null, 25000);

 or equivalently

 insert into deprtment (id, dname, budget)

 values (7, ’Civil’, 25000);

Modification of the Database – Deletion:

 Delete all instructors

delete from instructor

Database Systems I

32

 Delete all instructors from the Finance department

 delete from instructor

 where dept_name= ’Finance’;

Modification of the Database – Updates:

Increase salaries of instructors whose salary is over $1000 by 3%, and all others receive

a 5% raise

Write two update statements:

 update instructor

 set salary = salary * 1.03

 where salary > 1000;

 update instructor

 set salary = salary * 1.05

 where salary <= 1000;

The order is important

Referential Integrity:

Database Systems I

33

Chapter 5: Introduction to SQL

History:
• IBM Sequel language developed as part of System R project at the IBM San Jose

Research Laboratory

• Renamed Structured Query Language (SQL)

• ANSI and ISO standard SQL:

– SQL-86, SQL-89, SQL-92

– SQL:1999, SQL:2003, SQL:2008

• Commercial systems offer most, if not all, SQL-92 features, plus varying feature

sets from later standards and special proprietary features.

– Not all examples here may work on your particular system.

Data Definition Language:

The SQL data-definition language (DDL) allows the specification of information about

relations, including:

• The schema for each relation.

• The domain of values associated with each attribute.

• Integrity constraints

• Creating and editing databases

• Creating and editing tables

Domain Types in SQL:

• char(n). Fixed length character string, with user-specified length n.

• varchar(n). Variable length character strings, with user-specified maximum

length n.

• int(n) Integer (a finite subset of the integers that is machine-dependent).

• smallint. Small integer (a machine-dependent subset of the integer domain type).

• numeric(p,d) or decimal(p,d) Fixed point number, with user-specified precision

of p digits, with n digits to the right of decimal point.

• real or double. Floating point and double-precision floating point numbers, with

machine-dependent precision.

• float Floating point number, with user-specified precision of at least n digits.

Database Systems I

34

• date: Dates, containing a (4 digit) year, month and date

– Example: date ‘2005-7-27’

• time: Time of day, in hours, minutes and seconds.

– Example: time ‘09:00:30’ time ‘09:00:30.75’

• datetime: date plus time of day

– Example: timestamp ‘2005-7-27 09:00:30.75’

Create Database Construct:

An SQL database is defined using the create database command:

 create database d

– d is the name of the database

Example: create database university;

An SQL database is activated using the use command:

 use d

– d is the name of the database

Example: use university;

An SQL database is activated using the drop database command:

 drop database d

– d is the name of the database

Example: drop database university;

Database Systems I

35

Create Table Construct:

An SQL relation is defined using the create table command:

 create table r (A1 D1, A2 D2, ..., An Dn,

 (integrity-constraint1),

 ...,

 (integrity-constraintk))

– r is the name of the relation

– each Ai is an attribute name in the schema of relation r

– Di is the data type of values in the domain of attribute Ai

Example:

 create table instructor (

 ID char(5),

 name varchar(20) not null,

 dept_name varchar(20),

 salary numeric(8,2))

insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

insert into instructor values (‘10211’, null, ’Biology’, 66000);

Integrity Constraints in Create Table:

• not null

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references `r`(`A`)

Example: Declare dept_name as the primary key for department

 create table instructor (

 ID char(5),

 name varchar(20) not null,

 dept_name varchar(20),

 salary numeric(8,2),

 primary key (ID),

 foreign key(`dept_name`) references `department`(`dname`)

);

primary key declaration on an attribute automatically ensures not null.

Drop and Alter Table Constructs:
• drop table student

– Deletes the table and its contents

• delete from student

– Deletes all contents of table, but retains table

• alter table

– alter table r add A D

Database Systems I

36

• where A is the name of the attribute to be added to relation r and

D is the domain of A.

• All tuples in the relation are assigned null as the value for the new

attribute.

– alter table r drop A

• where A is the name of an attribute of relation r

• Dropping of attributes not supported by many databases

• ALTER TABLE `tableName` CHANGE COLUMN `oldColumnName`

`newColumnName` DATA TYPE

• ALTER TABLE `department` CHANGE COLUMN `Building` `Buildings` CHAR(2)

Basic Query Structure:
• The SQL data-manipulation language (DML) provides the ability to query

information, and insert, delete and update tuples

• A typical SQL query has the form:

 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

– Ai represents an attribute

– Ri represents a relation

– P is a predicate.

• The result of an SQL query is a relation.

Modification of the Database:

 Deletion of tuples from a given relation

 Insertion of new tuples into a given relation

 Updating values in some tuples in a given relation

Modification of the Database – Insertion:

A typical SQL insert query has the form:

 insert into r (Ai)

 values vi

 Ai represents an attribute

 r represents a relation

 v is values to be inserted

Examples:

 Add a new tuple to course

Database Systems I

37

insert into department

 values (6, ’IT’, ’B1’, 24000);

 Add a new tuple to department with building set to null

insert into department

 values (7, ’Civil’, null, 25000);

 or equivalently

 insert into deprtment (id, dname, budget)

 values (7, ’Civil’, 25000);

Modification of the Database – Deletion:

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department

 delete from instructor

 where dept_name= ’Finance’;

Modification of the Database – Updates:

Increase salaries of instructors whose salary is over $1000 by 3%, and all others receive

a 5% raise

Write two update statements:

 update instructor

 set salary = salary * 1.03

 where salary > 1000;

 update instructor

 set salary = salary * 1.05

 where salary <= 1000;

The order is important

The Select Clause:

• The select clause list the attributes desired in the result of a query

– corresponds to the projection operation of the relational algebra

• Example: find the names of all instructors:

 select name

 from instructor

• NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case

letters.)

– E.g. Name ≡ NAME ≡ name

– Some people use upper case wherever we use bold font.

• SQL allows duplicates in relations as well as in query results.

• To force the elimination of duplicates, insert the keyword distinct after select.

Database Systems I

38

• Find the names of all departments with instructor, and remove duplicates

 select distinct dept_name

 from instructor

• The keyword all specifies that duplicates not be removed.

 select all dept_name

 from instructor

• An asterisk (*) in the select clause denotes “all attributes”

 select *

from instructor

• The select clause can contain arithmetic expressions involving the operation, +, –

, *, and /, and operating on constants or attributes of tuples.

• The query:

 select ID, name, salary/12

 from instructor

would return a relation that is the same as the instructor relation, except that the

value of the attribute salary is divided by 12.

The Where Clause:

• The where clause specifies conditions that the result must satisfy

– Corresponds to the selection predicate of the relational algebra.

• To find all instructors in Comp. Sci. dept with salary > 80000

select name

 from instructor

 where dept_name = ‘Comp. Sci.' and salary > 80000

• Comparison results can be combined using the logical connectives and, or, and not.

• Comparisons can be applied to results of arithmetic expressions.

The From Clause:

• The from clause lists the relations involved in the query

– Corresponds to the Cartesian product operation of the relational algebra.

• Find the Cartesian product instructor × teaches

 select *

 from instructor, teaches

– generates every possible instructor – teaches pair, with all attributes from

both relations

• Cartesian product not very useful directly, but useful combined with where-

clause condition (selection operation in relational algebra)

Database Systems I

39

Cartesian Product: instructor × teaches

Joins:

• For all instructors who have taught some course, find their names and the course

ID of the courses they taught.

 select name, course_id

 from instructor, teaches

 where instructor.ID = teaches.ID

• Find the course ID, semester, year and title of each course offered by the Comp.

Sci. department

 select section.course_id, semester, year, title

 from section, course

 where section.course_id = course.course_id and dept_name = ‘Comp. Sci.'

Natural Join:

• Natural join matches tuples with the same values for all common attributes, and

retains only one copy of each common column

select *

from instructor natural join teaches;

Database Systems I

40

• List the names of instructors along with the course ID of the courses that they

taught.

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID;

select name, course_id

from instructor natural join teaches;

The Rename Operation:

• The SQL allows renaming relations and attributes using the as clause:

 old-name as new-name

• E.g.

select ID, name, salary/12 as monthly_salary

from instructor

• Find the names of all instructors who have a higher salary than some instructor

in ‘Comp. Sci’.

– select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

• Keyword as is optional and may be omitted

 instructor as T ≡ instructor T

String Operations:

• SQL includes a string-matching operator for comparisons on character strings.

The operator “like” uses patterns that are described using two special characters:

– percent (%). The % character matches any substring.

– underscore (_). The _ character matches any character.

Database Systems I

41

• Find the names of all instructors whose name includes the substring “dar”.

 select name

 from instructor

 where name like '%dar%'

• Match the string “100 %”

 like ‘100 \%' escape '\'

• Patterns are case sensitive.

• Pattern matching examples:

– ‘Intro%’ matches any string beginning with “Intro”.

– ‘%Comp%’ matches any string containing “Comp” as a substring.

– ‘_ _ _’ matches any string of exactly three characters.

– ‘_ _ _ %’ matches any string of at least three characters.

• SQL supports a variety of string operations such as

 select concat(fname,’ ’,lname) as fullname, age

 from student

Ordering the Display of Tuples:

• List in alphabetic order the names of all instructors

 select distinct name

 from instructor

 order by name

• We may specify desc for descending order or asc for ascending order, for each

attribute; ascending order is the default.

– Example: order by name desc

• Can sort on multiple attributes

– Example: order by dept_name, name

Where Clause Predicates:

• SQL includes a between comparison operator

• Example: Find the names of all instructors with salary between $90,000 and

$100,000 (that is, >=$90,000 and <=$100,000)

– select name

from instructor

where salary between 90000 and 100000

• Tuple comparison

– select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

Database Systems I

42

Aggregate Functions:

These functions operate on the multiset of values of a column of a relation, and return a

value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

Find the average salary of instructors in the Computer Science department

select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

Find the total number of instructors who teach a course in the Spring 2010 semester

select count (ID)

from teaches

where semester = ’Spring’ and year = 2010

Find the number of tuples in the course relation

select count (*)

from course;

Find the average salary of instructors in each department

select dept_name, avg (salary)

from instructor

group by dept_name;

Note: departments with no instructor will not appear in result

Database Systems I

43

Null Values and Aggregates:
Total all salaries

 select sum (salary)

 from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values on the

aggregated attributes

What if collection has only null values?

 count returns 0

 all other aggregates return null

Database Systems I

44

Chapter 6: Entity-Relationship Model

Modeling:
A database can be modeled as:

 a collection of entities,

 relationship among entities.

An entity is an object that exists and is distinguishable from other objects.

Example: specific person, company, event, plant

Entities have attributes

Example: people have names and addresses

An entity set is a set of entities of the same type that share the same properties.

Example: set of all persons, companies, trees, holidays

Entity Sets instructor and student

Relationship Sets:

A relationship is an association among several entities

Example:

 44553 (Peltier) advisor 22222 (Einstein)

 student entity relationship set instructor entity

A relationship set is a mathematical relation among n  2 entities, each taken from

entity sets

Database Systems I

45

 {(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

Example:

 (44553,22222)  advisor

Relationship Set advisor

 An attribute can also be property of a relationship set.

 For instance, the advisor relationship set between entity sets instructor and

student may have the attribute date which tracks when the student started

being associated with the advisor

Database Systems I

46

Degree of a Relationship Set:

 binary relationship

o involve two entity sets (or degree two).

o most relationship sets in a database system are binary.

 Relationships between more than two entity sets are rare. Most relationships are

binary. (More on this later.)

o Example: students work on research projects under the guidance of an

instructor.

o relationship proj_guide is a ternary relationship between instructor,

student, and project

Attributes:

 An entity is represented by a set of attributes, which is descriptive properties

possessed by all members of an entity set.

o Example:

o instructor = (ID, name, street, city, salary)

 course= (course_id, title, credits)

 Domain – the set of permitted values for each attribute

 Attribute types:

o Simple and composite attributes.

o Single-valued and multivalued attributes

 Example: multivalued attribute: phone_numbers

o Derived attributes

 Can be computed from other attributes

 Example: age, given date_of_birth

Composite Attributes

Database Systems I

47

Mapping Cardinality Constraints:

 It express the number of entities to which another entity can be associated via a

relationship set.

 It is most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality must be one of the

following types:

o One to one

o One to many

o Many to one

o Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Note: Some elements in A and B may not be mapped to any elements in the other set

One to one

One to many

Many to one Many to many

Database Systems I

48

Keys:

 A super key of an entity set is a set of one or more attributes whose values

uniquely determine each entity.

 A candidate key of an entity set is a minimal super key

o ID is candidate key of instructor

o course_id is candidate key of course

 Although several candidate keys may exist, one of the candidate keys is selected

to be the primary key.

 The combination of primary keys of the participating entity sets forms a super key

of a relationship set.

o (s_id, i_id) is the super key of advisor

o NOTE: this means a pair of entity sets can have at most one relationship

in a particular relationship set.

 Example: if we wish to track multiple meeting dates between a

student and her advisor, we cannot assume a relationship for each

meeting. We can use a multivalued attribute though

 Must consider the mapping cardinality of the relationship set when deciding what

are the candidate keys

 Need to consider semantics of relationship set in selecting the primary key in case

of more than one candidate key

Redundant Attributes:

 Suppose we have entity sets

o instructor, with attributes including dept_name

o department

 and a relationship

o inst_dept relating instructor and department

 Attribute dept_name in entity instructor is redundant since there is an explicit

relationship inst_dept which relates instructors to departments

o The attribute replicates information present in the relationship, and should

be removed from instructor

o BUT: when converting back to tables, in some cases the attribute gets

reintroduced, as we will see.

Database Systems I

49

E-R Diagrams:
Entity-Relationship (E-R) diagram is a graphical/ pictorial representations of Entities and

their Relationship.

Following g symbols were used to represent/ draw E-R Diagram:

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Attributes listed inside entity rectangle

 Underline indicates primary key attributes

E-R Diagram showing Binary Relationship:

Entity With Composite, Multivalued, and Derived Attributes:

Database Systems I

50

Relationship Sets with Attributes:

Roles:

 Entity sets of a relationship need not be distinct

o Each occurrence of an entity set plays a “role” in the relationship

 The labels “course_id” and “prereq_id” are called roles.

Cardinality Constraints:

 We express cardinality constraints by drawing either a directed line (),

signifying “one,” or an undirected line (—), signifying “many,” between the

relationship set and the entity set.

 One-to-one relationship:

o A student is associated with at most one instructor via the relationship

advisor

o A student is associated with at most one department via stud_dept

One-to-One Relationship:

 one-to-one relationship between an instructor and a student

o an instructor is associated with at most one student via advisor

o and a student is associated with at most one instructor via advisor

Database Systems I

51

One-to-Many Relationship:

 one-to-many relationship between an instructor and a student

o an instructor is associated with several (including 0) students via advisor

o a student is associated with at most one instructor via advisor

Many-to-One Relationships:

 In a many-to-one relationship between an instructor and a student,

o an instructor is associated with at most one student via advisor,

o and a student is associated with several (including 0) instructors via

advisor

Many-to-Many Relationship:

 An instructor is associated with several (possibly 0) students via advisor

 A student is associated with several (possibly 0) instructors via advisor

Participation of an Entity Set in a Relationship Set:

 Total participation (indicated by double line): every entity in the entity set

participates in at least one relationship in the relationship set

o E.g., participation of section in sec_course is total

 every section must have an associated course

 Partial participation: some entities may not participate in any relationship in the

relationship set

o Example: participation of instructor in advisor is partial

Database Systems I

52

Alternative Notation for Cardinality Limits:

 Cardinality limits can also express participation constraints

E-R Diagram with a Ternary Relationship:

Cardinality Constraints on Ternary Relationship:

 We allow at most one arrow out of a ternary (or greater degree) relationship

to indicate a cardinality constraint

 E.g., an arrow from proj_guide to instructor indicates each student has at most

one guide for a project

 If there is more than one arrow, there are two ways of defining the meaning.

o E.g., a ternary relationship R between A, B and C with arrows to B and C

could mean

1. each A entity is associated with a unique entity from B and C or

2. each pair of entities from (A, B) is associated with a unique C

entity, and each pair (A, C) is associated with a unique B

o Each alternative has been used in different formalisms

o To avoid confusion we outlaw more than one arrow

Database Systems I

53

Weak Entity Sets:

 An entity set that does not have a primary key is referred to as a weak entity

set.

 The existence of a weak entity set depends on the existence of a identifying

entity set

o It must relate to the identifying entity set via a total, one-to-many

relationship set from the identifying to the weak entity set

o Identifying relationship depicted using a double diamond

 The discriminator (or partial key) of a weak entity set is the set of attributes

that distinguishes among all the entities of a weak entity set.

 The primary key of a weak entity set is formed by the primary key of the strong

entity set on which the weak entity set is existence dependent, plus the weak

entity set’s discriminator.

 We underline the discriminator of a weak entity set with a dashed line.

 We put the identifying relationship of a weak entity in a double diamond.

 Primary key for section – (course_id, sec_id, semester, year)

 Note: the primary key of the strong entity set is not explicitly stored with the weak

entity set, since it is implicit in the identifying relationship.

 If course_id were explicitly stored, section could be made a strong entity, but then

the relationship between section and course would be duplicated by an implicit

relationship defined by the attribute course_id common to course and section

Database Systems I

54

E-R Diagram for a University Enterprise:

