Database Systems I

Chapter 1: Introduction to Database

What is DBMS?:

DBMS is a ccollection of interrelated data and a set of programs to access the data. It
provide an environment that is both convenient and efficient to use.

Applications of DBMS
Following are the list of applications of DBMS:
e Banking: transactions
e Airlines: reservations, schedules
e Universities: registration, grades
e Sales: customers, products, purchases
¢ Online retailers: order tracking, customized recommendations
e Manufacturing: production, inventory, orders, supply chain
e Human resources: employee records, salaries, tax deductions

University Database Example:

e Application program examples
o Add new students, instructors, and courses
o Register students for courses, and generate class rosters
o Assign grades to students, compute grade point averages (GPA) and
generate transcripts

¢ In the early days, database applications were built directly on top of file systems

Student Information System : Is

Manday, 8 October, 2018 | LOGOUT

ishik.edu.iq

STUDENT INFORMATION SYSTEM

HOME ACADEMICS | PERSONAL INFORMATION HELP

Registration + :
E = Curriculum
£
I
- S 8 |GPA:34
e e = Akademik Damigman: Alan Amin (Office: Telephone:)
e Department: COMPUTER ENGINEERING
s
Course Search —
e ELUE: Indicstes untsken courses, GREEN: Indisstes achisuad courses ORANGE: Indiestes taken couses, RED: Indisstes failed courses GRAY:
nicates sxempt sourses.
Weekly Schedule <
CODE COURSE TYPE CR ECTS YEAR GRADE STATUS CODE COURSE TYPE CR ECTS YEAR GRADE STATUS
Aftendance <« CMPE COMPU 4 2008 AA CMPE Ana 4 2000 AA
121 PROGR 122
B
Ll [CMFE C Ana 4 2008 AA
CMPE CALCULUSI Ana 4 2000 BB 162
Interim Grades +
4 CMPE PHYSICS Ana 4 2008 BA
New Grades « CMPE PHYSICS | ana 4 2000 BB 173
oA CMPE DISGRETE Ana 3 2008 AA
" CUPE Ana 1 2 2000 AR 154 MATHEMATICS
B)
essages 19 ELT Ana 3 2008 BB
A 3 E 5
Academic Calendar « f;_ e S| 12
& KUR Ana 2 1 2000 BB
ContactUs < KUR Ana 2 1 2008 CB 108
i KUR Ana 2 1 2000 BB
Documents and Forms < KUR oadsuss Ana 2 1 2008 CB 108
= T 431 NANT 3 2010 AR
Print This & BUS INTRODUCTION NAMNT 3 2010 AR S0
103 TOBUSINESS WORKS)
ANAGEMENT SEMESTER TOTAL CREDITS: 25 / 22
SEMESTER TOTAL CREDITS: 23 / 20

PBS

Name Sumame: MUSA M_AMEEN

Department:
Registration No: A-2140

ACADEMICS

Courses

Research Projects
Articles » Books
Survey

Syllabus

Schedule

Birthdays of Students

E-mail: musa.ameen@ishik.edu.iq

ISHIK UNIVERSITY
ERSONNEL INFORMATION SYSTEM

Database Systems I

8 October 2018, Monday

To change main details
Click Here:

IP Port:
Room No: 232-Main Building
Telephone:
Internal No: 1275

Courses

Contact Information of Personnel

My Weekly Schedule
Messaging Service
CV Preview

Edit CV

ADVISORYICOURSE REGS.

Student List
Search Student

DEPARTMENT M.

New Students
Unlock Terminate
Grades by Classes
Quotas of Courses
Annual Courses
Course Statistics
Success Statistics
Survey Statistics
NA Statistics

GPA Ranking
Coursze Descriptions

150 9001:2015

Problem reports: pbs@ishik.edu.iq Please include Year, somester, course code, section.

Please always keep a copy of your documents{syllabus, attendance, grades, etc.) on your
computer,

Coordinator can fill the shared courses syllabus and their lecturers should present their
syllabus plan to coordinator.

EXCEPT FIRST GRADE COURSES FALL AND YEARLY SYLLABUS FORM IS READY FOR
SUBMISSION. LAST DATE I5 15/10/2018

2018/ : Current system yearterm.

2015 - Fall Spring Summer 2016 - Fall Spring Summer 2017 - Fall Spring Summer

2018 - Fall Spring Summer

Year/

Semester

20181
CMPE
Active
Survey
Result
20181
CMPE
Active
Survey
Result
20181 IT

Active
Sunsau

Final
Syllabus Student Attendance Attendance Minor Makeup
Course Status List Attendance Sheet Entry Grades Grades Grades
CMPE 121/A No Download Click Here Click Here % Click Click Click
Computer Syllabus Photos Click Here Here Here Here
Programming E-mails
|
CMPE 201/A Download Click Here Click Here % Click Click Click
Object Phot Click Here ere ere Here
Oriented E-mails
Programming
IT 215/A Download Click Here Click Here % Click Click Click
Database Photos Click Here ere ere ere
Suatame | F_maile

POS System Database Example:

L2 Cash Register Lxpress - Station 01 - Candier: 100101 - S/W/2009 02:36 PM

TOMATO BREAD
S S0P T

<

B vty wd Faes B redoes P

Simple Database Example:

@ market

105 matches.

market n.
a0 dta~laat

classifier: uvs hing

Go to Category:
Situations Shopping

Take me to the market .

1U(aam bpai- dta~laat

Situations Transportation
Taxi/Van/Motorbike

Show 5 more choices

Dictionary App

Apps without Database:

ISHIK UNIVERSITY
FACULTY OF SCIENCE
Department of INFORMATION TECHNOLOGY,
2018-2019 Fall
Course Information for IT 215 DATABASE SYSTEMS |

‘Course Name: DATABASE SYSTEMS | |
Code Coursetype Reguiar Semester Theoretical Practical Credts ECTS
mas 2 3 2 2 3
Name of Lectureris}-
academc Tate, MUSA MAMEEN - NA

Teaching Assistant: Rebn Mutarmmo
Course Language: Engish
Course Type: Non-area Elective
Office Hours Tuesday ater 14:30-16.00, Tursday aftr 1430-15.30
‘Contact: Email musa ameen@ishik edu i
Tet
Teachar's academic BSc Degree in Computer Engineerng. NSc Degree in Comguter Engserng. Loctier
profil: Ishik Urnerssy
‘Course Objectives: The main cbjecives offus course are: Desgn methodology for Gatabases and verfyng

PDF Reader

Database Systems I

Kimberly Lee

' Aot Nwosy
. f\ Bit XU

©Q oo
A °

o prom—

Phone Contacts

Groove Music

MY MUSIC
Songs
Refine:

>¢ shuffle all (43)

piano0

piano1

Rt Al Calculator

Vanni Ctand In Matinn @ Dai

mozart 14
Unknown Artist

001 O

Music Player

Database Systems I

Drawbacks of using file systems to store data:
Following are the drawbacks of File System:

e Data redundancy and inconsistency: Multiple file formats, duplication of
information in different files

e Difficulty in accessing data: Need to write a new program to carry out
each new task

e Data isolation: multiple files and formats

e Integrity problems: Hard to add new constraints or change existing ones

e Atomicity of updates: Failures may leave database in an inconsistent state
with partial updates carried out

e Concurrent access by multiple users: Concurrent access needed for
performance

e Security problems: Hard to provide user access to some, but not all, data.

Database systems offer solutions to all the above problems

Levels of Abstraction:
e Physical level: describes how a record (e.g., customer) is stored.

e Logical level: describes data stored in database, and the relationships among the
data.
o type instructor = record
= |D:string;
name : string;
dept_name : string;
salary : integer;
end;
e View level: application programs hide details of data types. Views can also hide
information (such as an employee’s salary) for security purposes.

View of Data:

An Architecture for a Database System:

view level

view 1 view 2 cese view n

logical
level
I
physical
level

Database Systems I

Data Models:

Data models define how the logical structure of a database is modelled. Data
Models are fundamental entities to introduce abstraction in a DBMS.

Data models define how data is connected to each other and how they are
processed and stored inside the system.

Data Model is a collection of conceptual tools for describing data, data
relationships, data semantics, and consistency constraints.

A data model provides a way to describe the design of a database at the physical,
logical, and view levels.

The data models can be classified into four different categories:

Relational Model. The relational model uses a collection of tables to represent
both data and the relationships among those data.

Entity-Relationship Model. The entity-relationship (E-R) data model uses a
collection of basic objects, called entities, and relationships among these objects.
Object-Based Data Model. Object-oriented programming (especially in Java, C++,
or C#) has become the dominant software-development methodology.
Semi-structured Data Model. The semi-structured data model permits the
specification of data where individual data items of the same type may have
different sets of attributes.

Historically, the network data model and the hierarchical data model preceded the
relational data model. These models were tied closely to the underlying implementation,
and complicated the task of modelling data.

Relational Model:

The relational model uses a collection of tables to represent both data and the
relationships among those data. Each table has multiple columns, and each column
has a unique name.

Tables are also known as relations.

The relational model is an example of a record-based model.

Record-based models are so named because the database is structured in fixed-
format records of several types. Each table contains records of a particular type.
Each record type defines a fixed number of fields, or attributes.

The columns of the table correspond to the attributes of the record type.

The relational data model is the most widely used data model, and a vast majority
of current database systems are based on the relational model.

Example of tabular data in the relational model:

Database Systems I

Columns

_—

ID name dept_name salary
22222 Einstein Physics 95000 |«—— Rows
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan | Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table
A Sample Relational Database:

1D name dept_name salary
22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan | Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept_name | building budget
Comp. Sci. | Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Database Systems I

Relational DBMS:

e A database management system that stores data in the form of related tables is
called Relational Database Management System.

o Edgar F. Codd at IBM invented the relational database in 1970.

e Relational databases help solve problems as they are designed to create tables &
then combine the information in interesting ways to create valid information.

Typical example of Relational DBMS.
Typical examples of Relational DBMS are:
e Microsoft Access

e Microsoft SQL Server

e Sybase

e [BM DB2
e Oracle

e Ingres

° MySQL

e PostgreSQL

Database Schema:

e A database schema is a way to logically group objects such as tables, views, stored
procedures etc.
e Think of a schema as a container of objects.

Customer Product
¥ CustomeriD . 1179 ProdudiD
e Description
FirstName Cost
'\\s Address Price
;':’te Sales . ;Jfrfu.t:fri!;atsure
Zip 7 ProductlD FONERS
¥ CustomerlD
¥ RegionID
7 TimelD =
~ Quantity
Reqgion Price —
3 Fime
' RegionID ik A=
RegionCode v TimelD
RegionName TDate
ManagerLastName TMonth
ManagerFirstName TQtr
J TYear

Database Systems I

Chapter 2: Database Design Process

A database design process:
e Step 1: Define the Purpose of the Database (Requirement Analysis)
o This helps prepare for the remaining steps.

o Gather all of the types of information to record in the database, such as
product name and order number.

e Step 2: Find and organize the information required

o Divide information items into major entities or subjects, such as Products
or Orders.

o Each subject then becomes a table.
e Step 3: Gather Data, Organize in tables and Specify the Keys
o Decide what information needs to be stored in each table.
o Each item becomes a field, and is displayed as a column in the table.

o Choose each table’s primary key. The primary key is a column, or a set of
columns, that is used to uniquely identify each row

e Step 4: Create Relationships among Tables

o Look at each table and decide how the data in one table is related to the
data in other tables.

e Step 5: Refine & Normalize the Design

o Apply the so-called normalization rules to check whether your database is
structurally correct and optimal.

Normalization:

e Normalization is the process of organizing the data in the
database. Normalization is used to minimize the redundancy from a relation or set
of relations.

e [Itis also used to eliminate the undesirable characteristics like Insertion, Update
and Deletion Anomalies.

First Normal Form (1NF):

A table is 1NF if every cell contains a single value, not a list of values. This properties is
known as atomic. 1NF also prohibits repeating group of columns such as item1, item2,.,
item N. Instead, you should create another.

Database Systems I

Second Normal Form (2NF):

A table is 2NF, if it is 1NF and every non-key column is fully dependent on the primary
key. Furthermore, if the primary key is made up of several columns, every non-key
column shall depend on the entire set and not part of it.

Third Normal Form (3NF):

A table is 3NF, if it is 2NF and the non-key columns are independent of each other’s. In
other words, the non-key columns are dependent on primary key, only on the primary
key and nothing else.

Unique Values and Primary Keys:

e Almost all table in a database require a key.
e The key is a way to identify just one particular row in a table

N [—

—

e Akeyis used to guarantee a unique column for a row
e If one of the column is defined as containing a unique value even if there were a
million rows in this table, the same value cannot occur more than once in that

column.
unique not unique

153

374
352
376
153

e Most of your columns don’t need to be unique and shouldn’t be.
e But some of the columns must be unique like Social Security Numbers or ISBN
Numbers of books

Database Systems I

FirstName LastName HireDate Grade Salary SocialSecurity
(text) (text) (date) (numeric) (currency) (text, unique)
Alice Mann 4/4/2009 4 75000 55-65-1231
James Black 3/1/2010 4 75000 55-65-1231
Calista Guerra 10/1/2006 6 80000 54-23-1255

Fay Fitzgerald | 7/21/2002 7 100000 87-92-2341
John Bowen 11/11/2011 3 45000 43-23-1234

e This kind of data are naturally unique and there should never be duplicates
e But much of the time there isn’t one piece of naturally unique data.
¢ So you will make one instead. You will tell the database to generate a unique

column.
EmployeelD FirstName LastName HireDate Grade Salary SocialSecurity

(numeric, unique) (text) (text) (date) (numeric) (currency) (text, unique)
507 Alice Mann 4/4/2009 4 75000 55-65-1231

602 James Black 3/1/2010 4 75000 55-65-1231

312 Calista Guerra 10/1/2006 6 80000 54-23-1255

78 Fay Fitzgerald | 7/21/2002 7 100000 87-92-2341

523 John Bowen | 11/11/2011 3 45000 43-23-1234

e Most DBMSs help you to generate those kind of columns with these kind of
values.
e These column refers to Primary Key.

Primary Key (PK)

EmployeelD |FirstName LastName HireDate Grade Salary SocialSecurity
(numeric, unique) (text) (text) (date) (numeric) (currency) (text, unique)
507 Alice Mann 4/4/2009 4 75000 55-65-1231
602 James Black 3/1/2010 4 75000 55-65-1231
312 Calista Guerra 10/1/2006 6 80000 54-23-1255
78 Fay Fitzgerald | 7/21/2002 7 100000 87-92-2341
523 John Bowen | 11/11/2011 3 45000 43-23-1234
What is Primary Key?:

A primary key is a special relational database table column (or combination of columns)
designated to uniquely identify all table records. A primary key's main features are: It must
contain a unique value for each row of data. It cannot contain null values.

10

Database Systems I

Defining Relationships:

e Any Database begins with defining tables, vital next step is add relationships
among tables.

e Because much of your data is naturally connected.

e You are not trying to invent relationships that don’t exist. You are trying to
describe what'’s already there.

P
-

Customaer

w

siD sName Age clD cName Credit
11 Dara 24 IT215 Database 4
222 Nawzad 23 IT201 Web 3
333 Zara 24 IT301 Kurdology 2

e

Two Primary
Keys??

What's wrong??

Insert Anomaly:
siD sName Age clD cName Credit
111 Dara 24 IT215 Database 4
222 Nawzad 23 IT201 Web 3
333 Zara 24 IT301 Kurdology 2
111 Dara 24 301 Kurdology 2

* Primary key conflict
* Multiple copy of data

11

Database Systems I

Update Anomaly:

 Difficulty in updating all the data that’s related to each other.

Delete Anomaly:
* What will happen if we delete student 222
* Deleting a row will delete all the records exist in that row.

What is the Solution??

e Separate them into two tables

ID sName Age
111 Dara 24
222 Nawzad 23
333 Zara 24
Student
ID cName Credit
IT215 Database 4
IT201 Web 3
IT301 Kurdology 2
Course

Relationship:

A relationship, in the context of databases, is a situation that exists between two
relational database tables when one table has a foreign key that references the primary
key of the other table.

The various types of Relationship are:
e One-to-One
e One-to-Many
e Many-to-Many

One-to-One Relationship:

In a one-to-one relationship, one record in a table is associated with one and only one
record in another table.

For example, in a school database, each student has only one student ID, and each
student ID is assigned to only one person.

12

Database Systems I

One-to-Many Relationship:

In a one-to-many relationship, one record in a table can be associated with one or more
records in another table.

For Example, One department can have Many students. So the relation is One-to-Many
between department and student table

Information about student and department are different but they are related to each
other. So we need to formally describe relationships between our tables

diD dName Building
123 IT Al
444 Computer Al
955 Dentistry B1
Department
ID sName Age
111 Dara 24
222 Nawzad 23
333 Zara 24
Student
diD dName Building
123 IT Al
444 Computer A1
555 Dentistry B1 .
Department FOfElgn
/Key
ID sName Age diD
111 Dara 24 123
222 Nawzad 23 444
333 Zara 24 123
Student

13

Database Systems I

Pri K
rimary Key_

diD dName Building
123 IT Al
444 Computer Al
555 | Dentistry B Foreign
Department Key
1D sName Age diD
111 Dara 24 123
222 Nawzad 23 444
333 Zara 24 123
Student

e dID in Student table is not a primary key but Foreign Key and it is not unique.

What is Foreign Key?:

A foreign Key is a column or group of columns in a relational database table that provides
a link between data in two tables. It acts as a cross-reference between tables because it
references the primary key of another table, thereby establishing a link between them.

e Either we can go from the Department row or get dID then go to Student table and
get all students of the department.

e Or we can go from the Student row and get dID then go to Department table and
find which student is associated with that department

Customer < Order
Category ! 21 Products
Department < Employees
Classroom €] Students

e Itis very common to have this kind of relations between your tables.
¢ This kind of relation is called one to many

14

Database Systems I

Many-to-Many Relationship:

A many-to-many relationship occurs when multiple records in a table are associated with
multiple records in another table.

e Itis not unusual to sometimes needed to describe a many to many relationship.

e We've got 2 problems here:

e If there are students for one or more course, we will create the relationship by
adding sID column to Course Table

sID sName Age
111 Dara 24
222 Nawzad 23
333 Zara 24
Student
cID cName Credit sID
< IT215 Database 4 111
IT201 Web 3 333
IT301 | Kurdology 2 111
Course

e So far, so good. But here is issue:

e What happens if a course is taken by two or more different students.

e The way we have this describe right now, we can’t do that.

e We need a many to many relationship.

¢ One student can take many courses but also a course can be taken by many

students.
sID sName Ape
111 Dara 24
222 Nawzad 23
333 Zara 24
Student
cID cName Credit sID sID2
———| [T215 | Database 4 111 333
IT201 Web 3 333
IT301 Kurdology 2 111
Course

e Some people try this model, adding another column to the Book table.

¢ However, adding new columns to your table means repeating same information
again.

e Thisisabad idea and itis discouraged in database design.

15

Database Systems I

So we'll get rid of that technique.

sID sName Age
111 Dara 24
222 Nawzad 23
333 Zara 24
Student
cID cName Credit sID
———<| 215 | Database 4 111,333
IT201 Web 3 333
IT301 Kurdology 2 111
Course

Some other people think to cheat little bit. Something quick and dirty: Adding two
values into that sID column

Now AuthorID relates two author, But this’s also cheat like adding a new column.
This is highly discouraged as well.

So how do we solve this?

We go back to old tables with no official reference between them.

What we do to create many to many relationship is we add another table.

sID sName Age
111 Dara 24
222 Nawzad 23
333 Zara 24
Student
scID sID <ID
1 333 1T201
2 111 IT215 - ammm—
/ 3 333 IT301
StudentCourse
Junction
(Linkage) gl_Q_ cName Credit
IT215 Database 4
fable IT201 Web 3
IT301 Kurdology 2

Course

Only reason for this table to exist is to join the Author table and the Book table
together.
We set up two one to many relationship.

By using this we can go from Student to StudentCourse, find a cID and map that to
Course table.

16

Database Systems I

e We can also do it the other way

e Officially there is another relationship.

e One to one, but it's not common

EMPLOYEE

FARKFIMNG
ikl Not common

CnetoOne

OFRDER

Very common

ORDERLIME

-;

one to Many

STUDEMNT

COURSE

- -

Many to Many

Occasionally required

17

Database Systems I

Chapter 3: Constraints and Queries

About MS-Access:

Microsoft Access is a Database Management System (DBMS) from Microsoft that
combines the relational Microsoft Jet Database Engine with a graphical user interface and
software development tools. It is a member of the Microsoft Office suite of applications,
included in the professional and higher editions.

MS Access uses “objects” to help the user list and organize information, as well as
prepare specially designed reports. When you create a database, Access offers you
Tables, Queries, Forms, Reports, Macros, and Modules. Databases in Access are
composed of many objects but the following are the major objects -

e Tables
e Queries
e Forms
e Reports

Together, these objects allow you to enter, store, analyze, and compile your data.

MS-Access Data Types:

Every field in a table has properties and these properties define the field's characteristics
and behaviour. The most important property for a field is its data type. A field's data type
determines what kind of data it can store. MS Access supports different types of data,
each with a specific purpose.
e The data type determines the kind of the values that users can store in any given
field.
o Each field can store data consisting of only a single data type.

Here are some of the most common data types you will find used in a typical Microsoft
Access database.

Type of Data Description Size
Text or combinations of text and Up to 255 characters.
Short Text numbers, including numbers that do
not require calculating (e.g. phone
numbers).
Long Text Lengthy text or combinations of text Up to 63, 999 characters.

and numbers.

18

Number

Date/Time

Currency

AutoNumber

Yes/No

Numeric data used in mathematical

calculations.

Database Systems I

1, 2,4, or 8 bytes (16
bytes if set to Replication
ID).

Date and time values for the years 100 8 bytes

through 9999.

Currency values and numeric data
used in mathematical calculations

8 bytes

involving data with one to four decimal

places.

A unique sequential (incremented by

1) number or random number
assigned by Microsoft Access

whenever a new record is added to a

table.

Yes and No values and fields that
contain only one of two values
(Yes/No, True/False, or On/Off).

4 bytes (16 bytes if set to
Replication ID).

1 bit.

o Ifyou use previous versions of Access, you will notice a difference for two of those
data types.

e In Access 2013, we now have two data types — short text and long text. In
previous versions of Access these data types were called text and memo.

e The text field is referred to as short text and your memo field is now called long

text.

Here are some of the other more specialized data types, you can choose from in Access.

Data Types

Attachment

OLE
objects

Hyperlink

Description

Files, such as digital photos.
Multiple files can be attached per
record. This data type is not
available in earlier versions of
Access.

OLE objects can store pictures,
audio, video, or other BLOBs
(Binary Large Objects)

Text or combinations of text and

numbers stored as text and used as
a hyperlink address.

19

Size

Up to about 2 GB.

Up to about 2 GB.

Up to 8,192 (each part of a
Hyperlink data type can
contain up to 2048 characters).

Lookup
Wizard

Calculated

Database Systems I

The Lookup Wizard entry in the Dependent on the data type of
Data Type column in the Design the lookup field.
view is not actually a data type.

When you choose this entry, a

wizard starts to help you define

either a simple or complex lookup

field.

A simple lookup field uses the

contents of another table or a value

list to validate the contents of a

single value per row. A complex

lookup field allows you to store

multiple values of the same data

type in each row.

You can create an expression
that uses data from one or
more fields. You can designate
different result data types from
the expression.

You can create an expression that
uses data from one or more fields.
You can designate different result
data types from the expression.

Attribute Constraints and Properties:

Field Property

Field Size

Format
Input Mask

Decimal Places
Caption

Default Value

Validation Rule
Validation Text

Required

Allow Zero
Length

Indexed

Description

You can specify the size of a field. For Text fields, The maximum number of characters (0 to 255)
that can be entered in the field; the default setting is 255. For Number / Currency fields, stores
the number as a Byte, Integer, Long Integer, Single, Double, or Replication ID. The default setting
is Long Integer.

How the data in the field will be displayed on the screen.
Make a pattern in which data must be entered.

The number of decimal places in Number and Currency fields.

A label for the field that will appear on forms. If you do not enter a caption, Access will use the
field narme as the caption.

A value that Access enters automatically in the field for new records.

An expression that restricts or limits the values that can be entered in the field.

The error message that appears when an incorrect or restricted value is entered in a field with a
validation rule.

Specify whether or not a value must be entered in the field. The default is No.

Determines whether or not the field allows zero-length text strings (a string containing no characters).
Zero-length text strings are useful if you must enter data in a field, but no data exists. For example,
if an ISBN number field requires data, but you do not know the ISBN number of a book, you can
enter a zero-length text string in the field. To enter a zero-length text string type “" in the cell. The
cell will appear empty. The default is No.

Determines whether or not you want to index the field to speed up searches and sorts time. The
default is No.

20

Database Systems I

Input Mask:

An input mask is a string of characters that indicates the format of valid input values. You
can use input masks in table fields, query fields, and controls on forms and reports. The
input mask is stored as an object property.

You use an input mask when it’s important that the format of the input values is
consistent. For example, you might use an input mask with a field that stores phone
numbers so that Access requires ten digits of input. If someone enters a phone number
without the area code, Access won’t write the data until the area code data is added.

File Home Create External Data Database Tools Q Tel me what you want to do
5 B E A | 2 @

B = El s g B

View Test Validation Property Indexes CreateData Rename/ Relationships Object

- Rules Sheet Macr \ Mask Wizerd
Views Tools Showside | Field, g "PUt Mask Wizer R
All Access Obje D « student | " course Do you want to change the input mask? x
[search o Field Name D& nput Mask Name: Phone Number Description (Optional)

Tables N LAl AUtONUM| 1ot ask: 1(555) 000-0000]

sname Short Tex
= course phone Short Texd What placeholder character do you want the field to display?
B student

Placeholders are replaced as you enter data into the field.
Placeholder character: |

Trylt:
Cancel <Back Finish e
General Lookup
Field Size 255
Format
Input Mask 13999°) "000\ 001 00;0;_
Caption
Default Value
Validation Rule
Validation Text A patter for all data to be entered in this field
Required Ho
Allow Zero Length Yes
Indexed Mo
Unicode Compression Yes
IME Mode Ho Cantrol
IME Sentence Mode None
Text Align General

Input Mask Wizard Num Lock 24

0 for required numbers from 0-9 and 9 for optional numbers from 0-9

File Home Create External Data Database Tools Q Tell me what you want to do
= = B & =5 B
B BB =] £ 5 k=
View Test Validation Property Indexes CreateData Rename/ Relationships Object
© Rules Sheet Macr: \ Mask Wizerd
Views Tools Show/Hide | Field, g{ mPut Mask Wizar “
: = student ', course Vi i 2 x
A” Access Obje « Do you want to change the input mask:
o— ¥ Field Name D3 nput Mask Name: User Defined Description (Optional)
earch..
Tables N 7 AutoNUM| 1t pask: sLeccece]
sname Short Tex
H counse phane Short Tex] What placeholder character do you want the field to display?
B student city Short Tex

Placeholders are replaced as you enter data into the field.
Placeholder character: |_

Try It
] <Back = ke
General Lookup
Field Size 255
Format
Input Mask
Caption
Default Value
Validation Rule
Validation Text A pattern for all data to be entered in this field
Required HNo
Allow Zero Length Yes
Indexed No
Unicode Compression Yes
IME Made Na Control
IME Sentence Mode None
Text Align General

Input Mask Wizard

L for required characters from A-Z
C or ? for optional numbers from A-Z

Num Lock BL

21

Database Systems I

Characters that define input masks

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

Some input mask Characters:

0 Digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).

Digit or space (entry not required; blank positions converted to spaces, plus and minus signs allowed).
? Letter (A through Z, entry optional).

c Any character or a space (entry optional).

< Causes all characters that follow to be converted to lowercase.

> Causes all characters that follow to be converted to uppercase.

Causes the input mask to display from right to left, rather than from left to right. Characters typed
! into the mask always fill it from left to right. You can include the exclamation peint anywhere in the
input mask.

Password creates a password entry text box. Any character typed in the text box is stored as the

Password . aracter but is displayed as an asterisk ().

Input Mask Examples:

Input Mask Examples:

Input mask definition | Examples of values Input mask definition | Examples of values

(00Q) 000-0000 (308) 444-0247 (000) AAA-AAAA (206) 555-TELE
(308) 444-0247 -10
|
(999) 999-9999! 0 4440047 #999 R
~L0L OLO K3M 8N3 00000-9999 67223 - 67223-4009
ISBN 1-55514-607-9

=1 L00000-0000 KB71351-0037 ISBN 0-888888888-0 |20 o

Validation Rule:

You can vet or validate data in Access desktop databases as you enter it by using
validation rules. You can use the expression builder to help you format the rule correctly.
Validation rules can be set in either table design or table datasheet view. There are three
types of validation rules in Access:

1. Field Validation Rule: You can use a field validation rule to specify a criterion that all
valid field values must meet.

2. Record Validation Rule: You can use a record validation rule to specify a condition
that all valid records must satisfy.

3.Validation on a form: You can use the Validation Rule property of a control on a form
to specify a criterion that all values input to that control must meet.

22

Database Systems I

Validation Rule Examples

Create External Data Database Tools

== B

View | Primary Builder Test Validation Property Indexes Create Data Rename/ Relationships Object
- Ke Rules lodify Lookups | gheet Macros = Delete Macro Dependencies
Views Tools Show/Hide Field, Record & Table Events Relationships ~
All Access Objem 9 « || T student\FH course b3
Field Name Data Type Description (Optional) -
pearch. Plle ip AutoNumber
Tables x sname Short Text
= counse phane Short Text
B student age Number
reg date Date/Time

Field Properties

General Lookup

Format

Input Mask

Caption

Default Value

Validation Rule <=Datef)

Validation Text Must be today or earlier date| The error message that appears when you
Required No enter a value prohibited by the validation rule,
Indexed Mo Press F1 for help on validation text,
IME Mode Ho Control

IME Sentence Made None

Text Align General

Show Date Picker For dates

Design view. F6 = Switch panes. F1 = Help. Num Lock BL

<= Date() Todays date or earlier date is acceptable only

Home Create External Data Database Tools

— .
B YN &= _ B o5 B
View Primary Builder Test Validation) Property Indexes CreateData Rename/ Relationships Object
- Ke Rules Modify Lookups | gheet Macros~ Delete Macro Dependencies
Views Tools Show/Hide Field, Record & Table Events Relationships ~
All Access Obje S « || T student\FF course x
Field Name Data Type Description (Optional) -~
pearch. Pl o AutoNumber
Tables # sname Short Text
= course phone Short Text
B3 student age Number
reg date Date/Time

Field Properties

General Lookup

Field Size Long Integer

Format

Decimal Places Auto

Input Mask

Caption

Default Value [} An expression that limits the values that can
Validation Rule >=1And <=10 be entered in the field, Press 1 for help on
alidation Text validation rules.

Required No

Indexed Ho

Text Align General

Design view. F6 = Switch panes. F1 = Help. Num Lock 24

>=1 and <=10 number must be between 1 and 10

Some Validation Rule Examples:

<>0 Please enter a nonzero value.
1or =5 Value must be either 1 or over 5.
<#1/1/2010# Enter a date before 2010.

>=#1/1/2000# and <#1/1/2001# Date must be in 2000.

23

Database Systems I

Basic Query Structure:

Data Manipulation Language (DML):
The SQL data-manipulation language (DML) provides the ability to query information
like select, insert, delete and update tuples.

A typical SQL query has the form:
select A1, Az, ..., An
fromri,rz, ., rm
where P

Ai represents an attribute

Ri represents a relation

P is a predicate.

The result of an SQL query is a relation.

The Select Clause:

The select clause list the attributes desired in the result of a query corresponds to the
projection operation of the relational algebra
Example: find the names of all instructors:
select name
from instructor
NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)
e E.g. Name = NAME = name
e Some people use upper case wherever we use bold font.

Example: find the names of all departments:
select dName, Building
from Department

or
select Department.dName, Department.Building
from Department
Query result

diD dName Building dName Building
123 T A1 IT A1l
444 Computer Al Computer Al
555 Dentistry B1 Dentistry B1

Department

e SQL allows duplicates in relations as well as in query results.
e To force the elimination of duplicates, insert the keyword distinct after select.
¢ Find the names of all departments with instructor, and remove duplicates

24

Database Systems I

select distinct dept_name
from instructor
e The keyword all specifies that duplicates not be removed.
select all dName
from Department
e An asterisk in the select clause denotes “all attributes”
select *
from instructor
e The select clause can contain arithmetic expressions involving the operation, +, -
, *, and /, and operating on constants or attributes of tuples.
e The query:
select ID, name, salary/12
from instructor
e would return a relation that is the same as the instructor relation, except that the
value of the attribute salary is divided by 12.

The Where Clause:

e The where clause specifies conditions that the result must satisfy Corresponds to
the selection predicate of the relational algebra.
e To find all Students with Age of 24
select ID, sName, Age
from Student
where Age = 24
e Comparison results can be combined using the logical connectives and, or, and not.
e Comparisons can be applied to results of arithmetic expressions.

1D - sName - Age - Click to Add -
1 Dara 25 Student
2 Zara 24
3 Ahmed 26
1D - SMame - Age -

2| Zara 24

e The where clause specifies conditions that the result must satisfy
o Corresponds to the selection predicate of the relational algebra.
e To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept name = ‘Comp. Sci.' and salary > 80000
e Comparison results can be combined using the logical connectives and, or, and
not.
e Comparisons can be applied to results of arithmetic expressions.

Database Systems I

The From Clause:

e The from clause lists the relations involved in the query
o Corresponds to the Cartesian product operation of the relational algebra.
¢ Find the Cartesian product instructor X teaches
select *
from instructor, teaches
o generates every possible instructor - teaches pair, with all attributes from
both relations

e C(Cartesian product not very useful directly, but useful combined with where-clause
condition

Cartesian Product: instructor x teaches:

instructor teaches
ID name dept_name salary I ID [course_id I sec_id I semester [year I
10101 | Srinivasan | Comp. Sci. 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring 2010
15151 | Mozart Music 40000 10101 | CS-347 1 Fall 2009
22222 | Einstein Physics 95000 12121 | FIN-201 1 Spring 2010
32343 | El Said History 60000 15151 | MU-199 1 Spring 2010
: 22222 | PHY-101 1 Fall 2009
i |inst.ID | name dept_name IsalaryJlmclws.l!) cozu-se_idjscr_id;’s<.’nmst¢’r[ymr' |
10101 | Srinivasan | Comp. Sci. | 65000 10101 |Cs-101 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. | 65000 10101 |CS-315 1 |Spring [2010
10101 |Srinivasan | Comp. Sci. |65000| 10101 |[CS-347 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. 65000 12121 |FIN-201 1 |Spring [2010
10101 | Srinivasan | Comp. Sci. |65000| 15151 |MU-199 1 |Spring |2010
10101 [Srinivasan [Comp. Sci. |65000| 22222 |PHY-101 1 |Fall 2009
12121 | Wu Finance 90000 10101 |Cs-101 1 |Fall 2009
12121 [Wu Finance 90000| 10101 [Cs-315 1 |Spring |2010
12121 | Wu Finance 90000| 10101 |Cs-347 1 |Fall 2009
12121 [Wu Finance 90000| 12121 |[FIN-201 1 |[Spring |2010
12121 [Wu Finance 90000 15151 |MU-199 1 |Spring [2010| |
12121 | Wu Finance 90000| 22222 |PHY-101| 1 |[Fall 2009 [~

Joins:

e For all instructors who have taught some course, find their names and the course
ID of the courses they taught.
select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID
e Find the course ID, semester, year and title of each course offered by the Comp.
Sci. department

26

Database Systems I

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and
dept_name = ‘Comp. Sci.'

section course
course id » course id
sec_id title
semester dept_name
year credits
building
room_no
time_slot_id

Example:
List the names of instructors along with the course ID of the courses that they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

The Rename Operation:

The SQL allows renaming relations and attributes using the as clause:
old-name as new-name
E.g.
select ID, name, salary/12 as monthly_salary
from instructor
Find the names of all instructors who have a higher salary than some instructor in ‘Comp.
Sci’.
select distinct T. name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’
Keyword as is optional and may be omitted
instructor as T = instructor T
Keyword as must be omitted in Oracle

String Operations:

SQL includes a string-matching operator for comparisons on character strings. The
operator “like” uses patterns that are described using special characters:

percent (*). The * character matches any substring.
Find the names of all instructors whose name includes the substring “dar”.

27

Database Systems I

select name
from instructor
where name like “*dar*"

Kind of match Pattern Match No match

Multiple characters a*a aa, aBa, aBBBa aBC

ab abc, AABB, Xab aZb, bac
Special character al*la a*a aaa
Multiple characters ab* abcdefg, abc cab, aab
Single character a?a aaa, a3a, aBa aBBBa
Single digit a#ta ala, ala, a2a aaa, a10a
Range of characters | [a-Z] f,p,] 2, &

Ordering the Display of Tuples:

List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name
We may specify desc for descending order or asc for ascending order, for each attribute;
ascending order is the default.
Example: order by name desc
Can sort on multiple attributes
Example: order by dept_name, name

Where Clause Predicates:

SQL includes a between comparison operator
Example: Find the names of all instructors with salary between $90,000 and $100,000
(thatis, >=$90,000 and <=$100,000)
select name
from instructor
where salary between 90000 and 100000

Null Values:

It is possible for tuples to have a null value, denoted by null, for some of their attributes
null signifies an unknown value or that a value does not exist.

The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

28

Database Systems I

select name
from instructor
where salary is null

Aggregate Functions:

These functions operate on the multiset of values of a column of a relation, and return a
value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Find the average salary of instructors in the Computer Science department
select avg (salary)
from instructor
where dept_ name="Comp. Sci.’;
Find the total number of instructors who teach a course in the Spring 2010 semester
select count (/D)
from teaches
where semester = 'Spring’ and year = 2010
Find the number of tuples in the course relation
select count (*)
from course;

Find the average salary of instructors in each department
select dept_ name, avg (salary)
from instructor
group by dept_name;

Note: departments with no instructor will not appear in result

| ID | name | dept_name | salary |

76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000 dept_naine avg_salary
83821 | Brandt Comp. Sci. | 92000 Biology 72000
12121 | Wu Finance 90000

; : Elec. Eng. 80000
76543 | Singh Finance 80000 . =

- : Finance 85000

32343 | El Said History 60000 Hist 61000
58583 | Califieri | History | 62000 1Stoty ,
15151 | Mozart Music 20000 Music 40000
33456 | Gold Physics 87000 Physics 91000
22222 | Einstein Physics 95000

29

Database Systems I

Null Values and Aggregates:
Total all salaries
select sum (salary)
from instructor

e Above statement ignores null amounts
e Resultis null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values on the
aggregated attributes

What if collection has only null values?
e countreturns 0
¢ all other aggregates return null

30

Database Systems I

Chapter 4: Queries

Data Definition Language:

The SQL data-definition language (DDL) allows the specification of information about
relations, including:

e The schema for each relation.

e The domain of values associated with each attribute.

e Integrity constraints

e C(reating and editing databases

e Creating and editing tables

Modification of the Database:

e Deletion of tuples from a given relation
¢ Insertion of new tuples into a given relation
e Updating values in some tuples in a given relation

Modification of the Database — Insertion:
A typical SQL insert query has the form:

insert into r (4i)
values vi
e Airepresents an attribute
e rrepresents arelation
e visvalues to be inserted
Examples:
e Add a new tuple to course
insert into department
values (6,’IT’, 'B1’, 24000);
e Add a new tuple to department with building set to null
insert into department
values (7, 'Civil’, null, 25000);
e orequivalently
insert into deprtment (id, dname, budget)
values (7, 'Civil’, 25000);

Modification of the Database - Deletion:

e Delete all instructors
delete from instructor

31

Database Systems I

e Delete all instructors from the Finance department
delete from instructor
where dept_name="Finance’;

Modification of the Database - Updates:

Increase salaries of instructors whose salary is over $1000 by 3%, and all others receive
a 5% raise
Write two update statements:
update instructor
set salary = salary * 1.03
where salary > 1000;
update instructor
set salary = salary * 1.05
where salary <= 1000;
The order is important

Referential Integrity:

B Cascade Update Related Fields

(Checked) When primary key fields are updated, then foreign key
fields will be updated too

(Unchecked) When primary key fields are updated, then foreign
key fields will not be updated

B Cascade Delete Related Records

(Checked) When primary key records are deleted, then all the
foreign key records related to it will be deleted too

] (Unchecked) When primary key records are deleted, then all the
foreign Key records related to it will not be deleted

Edit Relationships ? *
Table/Query: Related Table/Query:
department ~ instructor w
Cancel
ID fkdid A
Join Type..
W

Create Mew..
Enforce Referential Integrity

Cascade Update Related Fields
Cascade Delete Related Records

Relationship Type: One-To-Many

32

Database Systems I

Chapter 5: Introduction to SQL

History:

IBM Sequel language developed as part of System R project at the IBM San Jose
Research Laboratory
Renamed Structured Query Language (SQL)
ANSI and ISO standard SQL:

— SQL-86, SQL-89, SQL-92

— SQL:1999, SQL:2003, SQL:2008
Commercial systems offer most, if not all, SQL-92 features, plus varying feature
sets from later standards and special proprietary features.

— Not all examples here may work on your particular system.

Data Definition Language:

The SQL data-definition language (DDL) allows the specification of information about
relations, including:

The schema for each relation.

The domain of values associated with each attribute.
Integrity constraints

Creating and editing databases

Creating and editing tables

Domain Types in SQL:

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum
length n.

int(n) Integer (a finite subset of the integers that is machine-dependent).
smallint. Small integer (a machine-dependent subset of the integer domain type).
numeric(p,d) or decimal(p,d) Fixed point number, with user-specified precision
of p digits, with n digits to the right of decimal point.

real or double. Floating point and double-precision floating point numbers, with
machine-dependent precision.

float Floating point number, with user-specified precision of at least n digits.

33

Database Systems I

Minimum
s Minimum Value Maximum Value Value
ype (Signed) (Signed) (Unsigned
)
TINYIN -128 127 0
SMALLINT -32768 32767 0
MEDIUMINT -8388608 8388607 to 0
INT -2147483648 2147483647 0
- 223372
BIGINT 9223372036854775 :23' 0368 0
54775807
808
e Min Value Max Value Min Value
ype (Signed) (Signed) (Unsigned)
FLOAT -3.402823466E+38 -1.175494351E-38 1215249435
0, and
-1.7976931348623 -2.2250738585072014E- 2.22507385
DOUBLE 157E+308 308 85072014E-
308

date: Dates, containing a (4 digit) year, month and date
Example: date ‘2005-7-27’

time: Time of day, in hours, minutes and seconds.
Example: time ‘09:00:30’ time ‘09:00:30.75’
datetime: date plus time of day

Example: timestamp ‘2005-7-27 09:00:30.75’

Create Database Construct:

An SQL database is defined using the create database command:
create database d

d is the name of the database

Example: create database university;

An SQL database is activated using the use command:
use d

d is the name of the database
Example: use university;

An SQL database is activated using the drop database command:
drop database d

d is the name of the database

Example: drop database university;

34

Maximumn
Value
(Unsigned)

~

255

65535
16777215
4294967295

184467440737
09551615

Max Value
(Unsigned)

3402823466
E+38

1.797693134
8623157E+
308

Database Systems I

Create Table Construct:

An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dy,
(integrity-constrainti),
(integrity-constraintk))
— ris the name of the relation
— each Aiis an attribute name in the schema of relation r
— Diis the data type of values in the domain of attribute A
Example:
create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))
insert into instructor values (‘10211’, ’Smith’, ‘Biology’, 66000);
insert into instructor values (‘10211’, null, 'Biology’, 66000);

Integrity Constraints in Create Table:
* notnull
* primary key (44, ..., 4n)
» foreign key (Am, ..., An) references r'(‘A)

Example: Declare dept name as the primary key for department
create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (/D),
foreign key('dept_name’) references ‘department’ (‘dname’)
);

primary Kkey declaration on an attribute automatically ensures not null.

Drop and Alter Table Constructs:
* drop table student

— Deletes the table and its contents
* delete from student

— Deletes all contents of table, but retains table
+ alter table

— altertableradd A D

35

Database Systems I

* where A is the name of the attribute to be added to relation r and
D is the domain of A.
» All tuples in the relation are assigned null as the value for the new
attribute.
— alter table rdrop A
* where A is the name of an attribute of relation r
* Dropping of attributes not supported by many databases

e ALTER TABLE ‘tableName' CHANGE COLUMN ‘oldColumnName’
‘newColumnName® DATA TYPE
* ALTER TABLE ‘department' CHANGE COLUMN "Building” "Buildings® CHAR(2)

Basic Query Structure:

 The SQL data-manipulation language (DML) provides the ability to query
information, and insert, delete and update tuples
» Atypical SQL query has the form:

select A1, Az, ..., An
fromry, rz, .., rm
where P
— Ai represents an attribute
— Ri represents a relation
— P isapredicate.
* The result of an SQL query is a relation.

Modification of the Database:

e Deletion of tuples from a given relation
e Insertion of new tuples into a given relation
e Updating values in some tuples in a given relation

Modification of the Database - Insertion:
A typical SQL insert query has the form:

insert into r (4i)
values v;
e Airepresents an attribute
e rrepresents arelation
e visvalues to be inserted
Examples:
e Add anew tuple to course

36

Database Systems I

insert into department
values (6, ’IT’,’'B1’, 24000);

e Add a new tuple to department with building set to null

insert into department

values (7, ’Civil’, null, 25000);
e or equivalently
insert into deprtment (id, dname, budget)
values (7, Civil’, 25000);

Modification of the Database - Deletion:

e Delete all instructors
delete from instructor

e Delete all instructors from the Finance department
delete from instructor
where dept_name="Finance’;

Modification of the Database — Updates:

Increase salaries of instructors whose salary is over $1000 by 3%, and all others receive
a 5% raise
Write two update statements:
update instructor
set salary = salary * 1.03
where salary > 1000;
update instructor
set salary = salary * 1.05
where salary <= 1000;
The order is important

The Select Clause:

» The select clause list the attributes desired in the result of a query
— corresponds to the projection operation of the relational algebra
+ Example: find the names of all instructors:
select name
from instructor
* NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case
letters.)
— E.g. Name = NAME = name
— Some people use upper case wherever we use bold font.

* SQL allows duplicates in relations as well as in query results.
» To force the elimination of duplicates, insert the keyword distinct after select.

37

Database Systems I

* Find the names of all departments with instructor, and remove duplicates
select distinct dept_name
from instructor
» The keyword all specifies that duplicates not be removed.
select all dept_name
from instructor
» An asterisk (*) in the select clause denotes “all attributes”
select *
from instructor
» The select clause can contain arithmetic expressions involving the operation, +, -
, *, and /, and operating on constants or attributes of tuples.
* The query:
select ID, name, salary/12
from instructor
would return a relation that is the same as the instructor relation, except that the
value of the attribute salary is divided by 12.

The Where Clause:

» The where clause specifies conditions that the result must satisfy
— Corresponds to the selection predicate of the relational algebra.
* To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept name = ‘Comp. Sci.' and salary > 80000
« Comparison results can be combined using the logical connectives and, or, and not.
» Comparisons can be applied to results of arithmetic expressions.

The From Clause:

» The from clause lists the relations involved in the query
— Corresponds to the Cartesian product operation of the relational algebra.
* Find the Cartesian product instructor x teaches
select *
from instructor, teaches
— generates every possible instructor - teaches pair, with all attributes from
both relations
» Cartesian product not very useful directly, but useful combined with where-
clause condition (selection operation in relational algebra)

38

Database Systems I

Cartesian Product: instructor x teaches

instructor teaches
1D name dept_name salary | ID | course_id | sec_id | semester | year |
10101 | Srinivasan | Comp. Sci. [65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | CS-315 1 Spring | 2010
15151 | Mozart Music 40000 10101 | CS-347 1 Fall 2009
22222 | Einstein Physics 95000 12121 | FIN-201 1 Spring 2010
32343 | El Said History 60000 15151 | MU-199 1 Spring | 2010
oo - T 22222 | PHY-1011 1 Fall 2009
finst.ll) name deptname [salary]tvadws.u) course_id Vjsec.id ?&nnestvrlymrl
10101 | Srinivasan | Comp. Sci. | 65000 10101 |CS-101 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. |65000| 10101 |Cs-315 1 |Spring [2010
10101 |Srinivasan | Comp. Sci. | 65000 10101 |CS-347 1 |Fall 2009
10101 |Srinivasan |Comp. Sci.|65000| 12121 |FIN-201 1 |Spring (2010
10101 |Srinivasan | Comp. Sci.|65000| 15151 |MU-199 1 |[Spring |2010
10101 |Srinivasan | Comp. Sci. | 65000 22222 |PHY-101| 1 |[Fall 2009
12121 [Wu Finance 90000 10101 |Cs-101 1 |Fall 2009
12121 [Wu Finance 90000| 10101 |Cs-315 1 |Spring |2010
12121 [Wu Finance 90000| 10101 |Cs-347 1 Fall 2009
12121 [Wu Finance 90000| 12121 |FIN-201 1 |Spring |2010
12121 | Wu Finance 90000 15151 |MU-199 1 |Spring (2010
12121 | Wu Finance 90000| 22222 |PHY-101| 1 |[Fall 2009
Joins:

» Forall instructors who have taught some course, find their names and the course
ID of the courses they taught.
select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID
» Find the course ID, semester, year and title of each course offered by the Comp.
Sci. department
select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and dept_name = ‘Comp. Sci.'

Natural Join:
* Natural join matches tuples with the same values for all common attributes, and
retains only one copy of each common column
select *
from instructor natural join teaches;

39

Database Systems I

ID name dept_name | salary | course_id| sec_id | semester| year
10101 |Srinivasan| Comp. Sci.| 65000 | CS-101 1 Fall 2009
10101 [Srinivasan| Comp. Sci.| 65000 | CS-315 1 |[Spring | 2010
10101 |Srinivasan| Comp. Sci.| 65000 | CS-347 1 |Fall 2009
12121 (Wu Finance 90000 | FIN-201 1 Spring 2010
15151 |Mozart | Music 40000| MU-199 1 |Spring | 2010
22222 |Einstein | Physics 95000| PHY-101| 1 Fall 2009
32343 |El Said History 60000 | HIS-351 1 Spring | 2010
45565 |Katz Comp. Sci.| 75000 CS-101 1 [Spring | 2010
45565 |Katz Comp. Sci.| 75000 | CS-319 1 |Spring | 2010
76766 |Crick Biology 72000| BIO-101 1 Summer| 2009
76766 1Crick Rinlnov 720001 RTO-2301 1 Summerl 2010

» List the names of instructors along with the course ID of the courses that they
taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

select name, course_id
from instructor natural join teaches;

The Rename Operation:

» The SQL allows renaming relations and attributes using the as clause:
old-name as new-name
- Eg
select ID, name, salary/12 as monthly_salary
from instructor
* Find the names of all instructors who have a higher salary than some instructor
in ‘Comp. Sci’.
— select distinct T. name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’
* Keyword as is optional and may be omitted
instructor as T = instructor T

String Operations:

* SQL includes a string-matching operator for comparisons on character strings.
The operator “like” uses patterns that are described using two special characters:
— percent (%). The % character matches any substring.
— underscore (_). The _character matches any character.

40

Database Systems I

* Find the names of all instructors whose name includes the substring “dar”.
select name
from instructor
where name like '%dar%'
* Match the string “100 %”
like ‘100 \%' escape '\’
» Patterns are case sensitive.
» Pattern matching examples:
— ‘Intro%’ matches any string beginning with “Intro”.
‘%Comp%’ matches any string containing “Comp” as a substring.

«

— ‘___ matches any string of exactly three characters.
— ‘___% matches any string of at least three characters.
* SQL supports a variety of string operations such as
select concat(fname,”’Iname) as fullname, age

from student

Ordering the Display of Tuples:

» Listin alphabetic order the names of all instructors
select distinct name
from instructor
order by name
* We may specify desc for descending order or asc for ascending order, for each
attribute; ascending order is the default.
— Example: order by name desc
* (Can sort on multiple attributes
— Example: order by dept name, name

Where Clause Predicates:

* SQL includes a between comparison operator
« Example: Find the names of all instructors with salary between $90,000 and
$100,000 (that is, >=$90,000 and <=$100,000)
— select name
from instructor
where salary between 90000 and 100000
* Tuple comparison
— select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 'Biology’);

41

Database Systems I

Aggregate Functions:

These functions operate on the multiset of values of a column of a relation, and return a
value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Find the average salary of instructors in the Computer Science department
select avg (salary)
from instructor
where dept_name='Comp. Sci.’;
Find the total number of instructors who teach a course in the Spring 2010 semester
select count (/D)
from teaches
where semester = 'Spring’ and year = 2010
Find the number of tuples in the course relation
select count (*)
from course;

Find the average salary of instructors in each department
select dept_ name, avg (salary)
from instructor
group by dept name;

Note: departments with no instructor will not appear in result

| ID | name | dept_name | salary |

76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000 dept_name avg_salary
83821 | Brandt Comp. Sci. | 92000 Biology 72000
12121 | Wu Finance 90000

; : Elec. Eng. 80000
76543 | Singh Finance 80000 : =

- - Finance 85000

32343 | El Said History 60000 Hist 61000
58583 | Califieri | History | 62000 1Story ,
15151 | Mozart Music 40000 Music 40000
33456 | Gold Physics 87000 Physics 91000
22222 | Einstein Physics 95000

42

Database Systems I

Null Values and Aggregates:
Total all salaries
select sum (salary)
from instructor

e Above statement ignores null amounts
e Resultis null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values on the
aggregated attributes

What if collection has only null values?
e countreturns 0
¢ all other aggregates return null

43

Database Systems I

Chapter 6: Entity-Relationship Model

Modeling:

A database can be modeled as:
e a collection of entities,
e relationship among entities.

An entity is an object that exists and is distinguishable from other objects.
Example: specific person, company, event, plant

Entities have attributes
Example: people have names and addresses

An entity set is a set of entities of the same type that share the same properties.
Example: set of all persons, companies, trees, holidays

Entity Sets instructor and student

instructor_ID instructor_name studentID student_name
76766 | Crick 98988 |Tanaka
45565 | Katz 12345 |Shankar
10101 | Srinivasan 00128 |Zhang
98345 | Kim 76543 |Brown
76543 | Singh 76653 |Aoi
22222 | Einstein 23121 |Chavez
instructor 44553 |Peltier
student

Relationship Sets:

A relationship is an association among several entities

Example:
44553 (Peltier) advisor 22222 (Einstein)
student entity relationship set instructor entity

A relationship set is a mathematical relation among n > 2 entities, each taken from
entity sets

44

Database Systems I

{(e1, ez, ...en) | €1 € E1,e2 € Ez, ..,en € En}
where (e, ez, ..., en) is a relationship

Example:
(44553,22222) € advisor

Relationship Set advisor

76766 | Crick 98988 |Tanaka

45565 | Katz 12345 | Shankar
10101 | Srinivasan T 00128 |Zhang
98345 | Kim ~\ 76543 | Brown
76543 | Singh < 76653 | Aoi

23121 |Chavez
44553 | Peltier

]
1

I

I

i

22222 |Einstein

I

instructor

student
e An attribute can also be property of a relationship set.
e For instance, the advisor relationship set between entity sets instructor and
student may have the attribute date which tracks when the student started
being associated with the advisor

76766 | Crick q
45565 | Katz N
10101 | Srinivasan H
98345 | Kim q
76543 | Singh a
22222 | Einstein -

98988 | Tanaka
12345 | Shankar
00128 | Zhang
76543 | Brown
- 76653| Aoi |
23121 |Chavez
44553 | Peltier

\

\

|

12 June 2006

|

6 June 2009

30 June 2007

31 May 2007

1

4 May 2006

[

instructor

student

45

Database Systems I

Degree of a Relationship Set:

e binary relationship
o involve two entity sets (or degree two).
o most relationship sets in a database system are binary.
e Relationships between more than two entity sets are rare. Most relationships are
binary. (More on this later.)
o Example: students work on research projects under the guidance of an
instructor.
o relationship proj guide is a ternary relationship between instructor,
student, and project

Attributes:
e An entity is represented by a set of attributes, which is descriptive properties
possessed by all members of an entity set.
o Example:
o Instructor = (ID, name, street, city, salary)
course= (course_id, title, credits)
e Domain - the set of permitted values for each attribute
e Attribute types:
o Simple and composite attributes.
o Single-valued and multivalued attributes
= Example: multivalued attribute: phone_numbers
o Derived attributes
= (Can be computed from other attributes
= Example: age, given date_of_birth

Composite Attributes

composite name address
attributes
first_name middle_initial last_name street city state postal_code
component
attributes

street_number street_name apartment_number

46

Database Systems I

Mapping Cardinality Constraints:

e [t express the number of entities to which another entity can be associated via a
relationship set.
e [t is mostuseful in describing binary relationship sets.
e For abinary relationship set the mapping cardinality must be one of the
following types:
o One to one
o One to many
o Many to one
o Many to many

A B

(b)
One to one One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

A B A B

(a) (b)

Many to one Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

47

Database Systems I

Keys:

e A super key of an entity set is a set of one or more attributes whose values
uniquely determine each entity.
¢ A candidate key of an entity set is a minimal super key
o IDis candidate key of instructor
o course_id is candidate key of course
e Although several candidate keys may exist, one of the candidate keys is selected
to be the primary Kkey.
e The combination of primary keys of the participating entity sets forms a super key
of a relationship set.
o (s_id, i_id) is the super key of advisor
o NOTE: this means a pair of entity sets can have at most one relationship
in a particular relationship set.
= Example: if we wish to track multiple meeting dates between a
student and her advisor, we cannot assume a relationship for each
meeting. We can use a multivalued attribute though
e Must consider the mapping cardinality of the relationship set when deciding what
are the candidate keys
¢ Need to consider semantics of relationship set in selecting the primary key in case
of more than one candidate key

Redundant Attributes:

e Suppose we have entity sets
o Instructor, with attributes including dept_name
o department
e and a relationship
o inst_dept relating instructor and department
e Attribute dept name in entity instructor is redundant since there is an explicit
relationship inst_dept which relates instructors to departments
o The attribute replicates information present in the relationship, and should
be removed from instructor
o BUT: when converting back to tables, in some cases the attribute gets
reintroduced, as we will see.

48

Database Systems I

E-R Diagrams:
Entity-Relationship (E-R) diagram is a graphical/ pictorial representations of Entities and
their Relationship.

Following g symbols were used to represent/ draw E-R Diagram:
e Rectangles represent entity sets.
e Diamonds represent relationship sets.
e Attributes listed inside entity rectangle
e Underline indicates primary key attributes

E-R Diagram showing Binary Relationship:

instructor student
ID advisor ID

name name
salary tot_cred

Entity With Composite, Multivalued, and Derived Attributes:

instructor

ID
name
first_name
middle_initial
last _name
address
street
street_number
street_name
apt_number
city
state

Zip
{ phone_number }

date_of birth
age ()

49

Database Systems I

Relationship Sets with Attributes:

date
|
instructor : student
ID aduvisor ID
narmie name
salary tot_cred

Roles:

e Entity sets of a relationship need not be distinct
o Each occurrence of an entity set plays a “role” in the relationship
e The labels “course_id” and “prereq_id” are called roles.

ourse .
cours course_id
course_id
title . prereq
) rereq id
credits P -

Cardinality Constraints:

e We express cardinality constraints by drawing either a directed line (-),
signifying “one,” or an undirected line (—), signifying “many,” between the
relationship set and the entity set.

e One-to-one relationship:

o A student is associated with at most one instructor via the relationship
advisor
o Astudent is associated with at most one department via stud_dept

One-to-One Relationship:

e one-to-one relationship between an instructor and a student
o an instructor is associated with at most one student via advisor
o and a student is associated with at most one instructor via advisor

instructor student
ID ID
name name
salary tot_cred

50

Database Systems I

One-to-Many Relationship:

e one-to-many relationship between an instructor and a student
o an instructor is associated with several (including 0) students via advisor
o astudent is associated with at most one instructor via advisor

instructor student
ID advisor ID
namie name
salary tot_cred

Manyv-to-One Relationships:

¢ In a many-to-one relationship between an instructor and a student,
o an instructor is associated with at most one student via advisor,
o and a student is associated with several (including 0) instructors via

advisor

instructor student
ID ID
name name
salary tot_cred

Many-to-Many Relationship:

e Aninstructor is associated with several (possibly 0) students via advisor
e A student is associated with several (possibly 0) instructors via advisor

instructor student
ID ID

name name
salary tot_cred

Participation of an Entity Set in a Relationship Set:

e Total participation (indicated by double line): every entity in the entity set
participates in at least one relationship in the relationship set
o E.g., participation of section in sec_course is total
e every section must have an associated course

Partial participation: some entities may not participate in any relationship in the
relationship set

o Example: participation of instructor in advisor is partial

51

course

course id
title
credits

Alternative Notation for Cardinality Limits:

Database Systems I

section

e Cardinality limits can also express participation constraints

instructor

ID
name
salary

E-R Diagram with a Ternary Relationship:

mstructor

ID
name
salary

Cardinality Constraints on Ternary Relationship:

student

ID
name
tot_cred

project

proj_guide

student

ID

name
tot_cred

e We allow at most one arrow out of a ternary (or greater degree) relationship
to indicate a cardinality constraint

e E.g,an arrow from proj_guide to instructor indicates each student has at most

one guide for a project

e Ifthere is more than one arrow, there are two ways of defining the meaning.
o E.g,aternary relationship R between 4, B and C with arrows to B and C

could mean

1. each A entity is associated with a unique entity from B and C or
2. each pair of entities from (4, B) is associated with a unique C
entity, and each pair (4, C) is associated with a unique B

o Each alternative has been used in different formalisms
o To avoid confusion we outlaw more than one arrow

52

Database Systems I

Weak Entity Sets:

An entity set that does not have a primary key is referred to as a weak entity
set.
The existence of a weak entity set depends on the existence of a identifying
entity set

o It must relate to the identifying entity set via a total, one-to-many

relationship set from the identifying to the weak entity set

o Identifying relationship depicted using a double diamond
The discriminator (or partial key) of a weak entity set is the set of attributes
that distinguishes among all the entities of a weak entity set.
The primary key of a weak entity set is formed by the primary key of the strong
entity set on which the weak entity set is existence dependent, plus the weak
entity set’s discriminator.
We underline the discriminator of a weak entity set with a dashed line.
We put the identifying relationship of a weak entity in a double diamond.
Primary key for section - (course_id, sec_id, semester, year)

course section
course id - . sec_id
title semester
credits year

¢ Note: the primary key of the strong entity set is not explicitly stored with the weak

entity set, since it is implicit in the identifying relationship.

e If course_id were explicitly stored, section could be made a strong entity, but then

the relationship between section and course would be duplicated by an implicit
relationship defined by the attribute course_id common to course and section

53

E-R Diagram for a University Enterprise:

course_id

course_dept

course

course_id

Database Systems I

department

dept name
building
budget

instructor

ID
name
salary

title
credits

o

prereq_id

&

capacity

room number

5%

student
advisor ID
name
tot_cred
/ N
section
sec_id. time_slot
semester Sec_time_slot time_slot id
year { day
start_time
end_time
}
classroom
building

