
 

1 
 

IT 311 OBJECT ORIENTED PROGRAMMING I 

 

 

 

Prepared by: Assist. Lect. Mohammad Salim Al-Othman 

 

Department of INFORMATION TECHNOLOGY,  

2018-2019 Fall Semester 

FACULTY OF SCIENCE  

ISHIK UNIVERSITY  

 

October 2018  

Course materials are mainly based on 

(Tutorialspoint.com, Udacity.com, Docs.oracle.com/javase) 

For more details refer to this textbook: 

(Object-Oriented Second Edition Programming and Java by Danny Poo) 



 

2 
 

Contents 

What’s OOP .................................................................................................................................................. 5 

Fields ............................................................................................................................................................. 8 

Accessing fields: .................................................................................................................................... 8 

Methods .................................................................................................................................................... 9 

Calling a method ................................................................................................................................... 9 

Summary ............................................................................................................................................... 9 

Next Step .............................................................................................................................................. 9 

Integrated Development Environment ..................................................................................................... 10 

What is an IDE .................................................................................................................................... 10 

Choosing an IDE .................................................................................................................................. 10 

Objects & Classes ....................................................................................................................................... 11 

Strings ..................................................................................................................................................... 13 

Everything is an object in Java ............................................................................................................... 13 

The main method ....................................................................................................................................... 14 

Creating Classes .......................................................................................................................................... 15 

Creating a new Java project in IntelliJ ....................................................................................................... 15 

Creating a class in IntelliJ ........................................................................................................................... 17 

Create your first method ............................................................................................................................ 18 

Constructors ............................................................................................................................................... 21 

Creating a constructor ............................................................................................................................ 21 

Default constructor ................................................................................................................................ 21 

Parameterized constructor .................................................................................................................... 22 

Accessing a constructor .......................................................................................................................... 22 

Why multiple constructors? ................................................................................................................... 23 

But we said the default constructor is optional!............................................................................... 23 

Self Reference ............................................................................................................................................. 23 

Using this with a Field ..................................................................................................................... 23 

Example: The Contacts Manager ............................................................................................................... 24 

The ContactsManager class methods ........................................................................................................ 26 

Programming Quiz ...................................................................................................................................... 28 

Solution: Contacts Manager ...................................................................................................................... 28 

Access Modifiers ......................................................................................................................................... 30 



 

3 
 

Fields (public vs private) ............................................................................................................................ 31 

Summary ..................................................................................................................................................... 32 

Methods (public vs private) ....................................................................................................................... 33 

Public classes .......................................................................................................................................... 34 

Summary............................................................................................................................................... 34 

Quiz : Access Modifiers .............................................................................................................................. 35 

Conclusion: ................................................................................................................................................. 35 

Part Two: User Interaction ......................................................................................................................... 36 

Reading User Input ..................................................................................................................................... 36 

Runtime Inputs ....................................................................................................................................... 36 

GUI ...................................................................................................................................................... 36 

Java for Android ................................................................................................................................. 36 

Input Scanner ............................................................................................................................................. 37 

Guess the number game ............................................................................................................................ 38 

Building the game....................................................................................................................................... 40 

Interesting fact ....................................................................................................................................... 42 

Exercise: Input Scanner .............................................................................................................................. 43 

File Scanner................................................................................................................................................. 44 

Word Count ................................................................................................................................................ 44 

Exercise: File Scanner ................................................................................................................................. 46 

Using the terminal ...................................................................................................................................... 47 

Running a program in IntelliJ .................................................................................................................. 47 

Running a program in Terminal (mac) .................................................................................................... 47 

Running a program via the command line (Windows) ........................................................................... 48 

Command line arguments .......................................................................................................................... 49 

Exceptions ................................................................................................................................................... 50 

Handling exceptions ................................................................................................................................... 54 

Catching exceptions ............................................................................................................................... 54 

Multiple catch statements ................................................................................................................ 54 

Catching all exceptions ........................................................................................................................... 55 

Quiz: Exceptions ......................................................................................................................................... 55 

Part 3: Project 2: Guess The Movie ............................................................................................................ 57 

Part 4: Inheritance ...................................................................................................................................... 61 



 

4 
 

There's More to OOP .................................................................................................................................. 61 

Inheritance.................................................................................................................................................. 62 

Exercise: Designing the BankManager application ................................................................................... 65 

Polymorphism ............................................................................................................................................ 66 

Quiz: Polymorphism ................................................................................................................................... 70 

The Chess Example ..................................................................................................................................... 70 

Overriding methods ................................................................................................................................... 74 

Programming Quiz: Override ..................................................................................................................... 76 

Super ........................................................................................................................................................... 76 

QUIZ: Move Method .................................................................................................................................. 78 

Multiple Inheritance................................................................................................................................... 78 

Interfaces .................................................................................................................................................... 79 

Comparable Interface................................................................................................................................. 82 

Final methods ............................................................................................................................................. 84 

Final fields ................................................................................................................................................... 85 

Static ........................................................................................................................................................... 86 

Static Methods -1 ....................................................................................................................................... 89 

Quiz: Try it out yourself .............................................................................................................................. 90 

Static Methods - 2 ...................................................................................................................................... 91 

Summary ................................................................................................................................................. 92 

 

 

 

 

 

 

 



 

5 
 

Part One: The World of Objects 
This lesson provides an introduction to object-oriented programming, and also explains 

how to use classes and objects in Java. 

 
Before you start this course we recommend you first go through introduction about Java ( 
Variables , loops , methods)  and familiarize yourself with everything in it. This course will cover 
a variety of slightly advanced topics in Java: 

• Object Oriented Programming 
• Interacting with the user 
• OOP concepts like "Inheritance" and more 
• Collections to store a group of objects 

 

What’s OOP 
OOP is a type of programming that is driven by modeling your code around building units called 

objects, each object as the name implies represents a real-life object in the world around us like 

a building a book a tree a car even a person. 

 

 

Nowadays almost every modern programming language you’ve heard of is an object-oriented 

including our Java.  



 

6 
 

 

The idea is when you’re coding you want to solve 

a real-world problem and modeling your code to 

match what you’re trying to solve makes sense. 

 

 

 

 

For example, assume you’re building a Pokemon game in 

Java, then your code mostly will have an object for each 

Pokemon characters. As well as Pokemon objects, an 

object for each item he can carry and so on. 

 

 

Each object is responsible for holding 

the data that describes itself. The 

Pokemon object for example has a 

name , a type , and a number 

indicating health level. These are 

referred to as Fields and along  with 

having fields , objects are also able to 

perform actions.  

 



 

7 
 

A Pokemon for example can Attack, 

doge and evolve. These actions in Java 

are referred to as Methods. 

 

 

 

 

 

 

 

Now the question what does that example go to do with Java? 

 

Just like creating variables of basic data types like 

integers and doubles otherwise known as 

Primitive variables, an object is nothing more 

than an enhanced data type that you get to design 

by yourself. An integer for example can only store 

a single number. But a Pokemon object can store 

the name, type, how fights won and much more 

all in one single variable and it can perform 

actions using Methods. 

 

So why people are still using Primitive variables now? 

As you might know you can’t really write any Java 

code without them, since object themselves are 

made up of those primitive variables. 

 

 

 

 

 



 

8 
 

To summarize why we use objects ? 

 

 

 

 

Fields 
The fields of an object are all the data variables that make up that object. They are also 
sometimes referred to as attributes or member variables. 
These fields are usually made up of primitive types like integers or characters, but they can also 
be objects themselves.  For example a book object may contain fields 
like title, author and numberOfPages. Then a library object may contain a field named books that 
will store all book objects in an array. 

Accessing fields: 

Accessing a field in an object is done using the dot modifier ‘.’ 

For example, if we had an object called book that contains these fields: 



 

9 
 

Methods 
 

You might have also noticed that running actions in objects look very much like 
calling a function. That’s because that’s exactly what it is. 

Methods in Java are functions that belong to a particular object. When we get to 
creating our own object types later in this lesson we will be creating methods the 
same way we used to created functions. 

Calling a method 

To use a method you call it (just like calling a function). This is also done using the 
dot modifier . 
Methods, just like any function can also take in arguments. For Example: Assume 
that our book object has a method called setBookmark that takes the page number 
as a parameter: 
void setBookmark(int pageNum); 
If you wanted to set a bookmark at page 12, you can call the method and pass in 
the page number as an argument: 

book.setBookmark(12); 

Summary 

Fields and Methods together are what make an object useful, fields store the 
object's data while methods perform actions to use or modify those data. 
However some objects might have no fields and are just made up of a bunch of 
methods that perform various actions. 

Other objects might only have fields that act as a way to organize storing data but 
not include any methods! 

Next Step 
 

Now that we’ve seen how to use objects and access their fields as well as call 
their methods,  
let’s set up your computer so you can start using objects straight away. 
 



 

10 
 

Integrated Development Environment 
 

What is an IDE 
 

To be able to create and run any code in Java (and pretty much any programming 
language), you will need 2 main things: 

1. A helpful text editor that highlights keywords with different colors and 
autocompletes code. 

2. A compiler that converts your Java code into computer code (known as bytecode) 
that can be understood by computers and hence run properly. 
An IDE (which stands for Integrated Development Environment) combines both of 
those amongst other features like highlighting errors and potential bugs. 

An IDE will help you power through creating any project in almost any programming 
language. 

 

Choosing an IDE 

 

There are plenty of options out there, and choosing one is usually based the 
programming language you're using as well as your personal preference. Here's a 
list of the most commonly used Java IDEs: 
 

1. IntelliJ 
2. NetBeans 
3. Eclipse 
4. Android Studio (based on IntelliJ) 

 

 

 

 

 



 

11 
 

Objects & Classes 
Objects are so powerful they can hold up lots of different data types into that one variable and 

they can perform actions using methods. So, they keep our code well-organized. But how we as 

developers get to design our own objects? 

We do so by creating classes, a class simply put it is just an object type. It’s the blueprint that 

defines what the object should looks like. An object on the other hand is the actual entity that is 

created from the class. 

In other words, a class is where you would list all the fields and implement all the methods when 

defining what the object should look like. A Pokemon class would list that a Pokemon has to have 

a name, type and a value for itself and it can also perform actions like doge and attack. 

 

Another example, if you wanted to define a class that's called vehicle that has the fields: color 

horsepower, and number of seats. My car would be a single object of that class. And inside that object, 

it would typically have those fields set to specific values. Like my car is blue, has the horsepower of 160 

and the seats are two. And, you can create as many objects as you want of that class.   

Each object would have a set of different values for those same fields. But, they all have to include a color, 

the number of seats and the horsepower as defined by the class. In Java, each class should be created in 

its own file. Each of those files has the extension.java.  

And a typical Java program is nothing more than a bunch of  those Java files or classes interacting with 

each other. No Java code can live anywhere outside a class, which means that any variable has to be a 

field inside some class and any code or logic has to be inside some 



 

12 
 

 Classes and Objects are two different terms and should not be used 

interchangeably, they can sometimes seem like they both refer to the same thing 

but each has a different meaning. 

Here's a comparison that illustrates when to use which: 



 

13 
 

Strings 
You've probably already noticed that (unlike all primitive types) Strings start with 
an upper case 'S'! That's because a String is in fact a class and not a primitive type 

A String variable is made up of an array of characters (char []) as its field, but 
being an object means that it also offers some powerful methods 
like length() that counts and returns the number of characters in that array, 
and equals(String s) that compares the characters in this string with another 
string. 

Everything is an object in Java 
Because Java is an OOP language, it includes classes that simply wrap around all 
the primitive types themselves to offer some extra functionality through their 
methods: 

 

 

 



 

14 
 

The main method 
A Java program can be as small as a single class, but usually a single program will be 

made up of tens or even hundreds of classes! 

A good Java program is one that divides the logic appropriately so that each class 

ends up containing everything related to that class, and nothing more! 

Classes would be calling each other's methods and updating their fields to make up 

the logic of the entire program all together! 

BUT, where should the program start from exactly? In other words, if a method can 

call another method and that method can call another, which method will start this 

sequence the very first time? 

The answer is the main method! It looks like this: 

public static void main(String [] args){ 
   // Start my program here 
} 
Let's break it down: 

• public: Means you can run this method from anywhere in your Java program (we will talk 
more about public and private methods later 

• static: Means it doesn't need an object to run, which is why the computer starts with this 
method before even creating any objects (we will also talk more about static methods later 
on) 

• void: Means the main method doesn't return anything, it just runs when the program 
starts, and once it's done the program terminates 

• main: Is the name of the method 
• String [] args : Is the input parameter (array of strings) which we will cover how to 

use it later in this lesson as well! 

This main method is the starting point for any Java program, when a computer runs 

a Java program, it looks for that main method and runs it. 

Inside it you can create objects and call methods to run other parts of your code. 

And then when the main method ends the program terminates. 

If this main method doesn't exist, or if there's more than one, the Java program 

won't be able to run at all! 

The main method can belong to any class, or you can create a specific class just for 

that main method which is what most people do. 

Let's have a look at an example next. 



 

15 
 

Creating Classes 
You now know that classes in Java are simply plain text files with an extension.java And a Java 

project is simply a folder that contains a bunch of those Java files. In fact, you can actually 

create an entire Java project with nothing more than a basic text editor like a notepad and a 

compiler that runs on the command line.  

That's pretty much all you need. But nowadays, there are plenty of really cool tools called IDEs 

that make this development experience much more pleasant. IntelliJ is one of those. So, for the 

rest of this course, we will be showing you how to create in-projects in intelliJ. 

However, if you are learning Java to create Android projects and already have Android Studio 

installed, feel free to use that instead. They look very much alike and you will still be able to 

easily follow along with the videos. And if you have another IDE like Eclipse or NetBeans, you 

can continue to use those as well. But we do strongly recommend installing IntelliJ to avoid 

running into issues that were not covered here. 

Creating a new Java project in IntelliJ 
First thing, let's run IntelliJ and select Create New Project 

 

 

https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029


 

16 
 

Then make sure the Project SDK has java version 1.8 selected there. If it's not in the menu 

options, then make sure you have the latest Java JDK installed.  

 

Use the default settings and move to the next screen, now give your new project a name, let's 

call it MyFirstJavaProject 

https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029


 

17 
 

Congratulations! Now you have an empty Java Project! 

On the left side you can see the folder structure of the project, the most important folder of 
all is the src folder, inside we will keep all our Java files. 

 

Creating a class in IntelliJ 
 

Now to create our first class, right-click on this src folder and select New and then Java Class 
Give your class a name, let's call it Main since that will be our main class 

And voila! We now have an actual class file inside our project. 

https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029


 

18 
 

You can see that IntelliJ has automatically created a file inside the src folder with the same 
name of the class Main. 

 

Now that we have our first class created, let's move to the next part where we get to add 

methods and fields to that class. 

 

 

Create your first method 
Ok, now let's add the main method to our Main class. 

Open the Main class and inside the class curly bracket start typing the definition of the main 
method: 

public static void main(String [] args){ 
} 
Then, inside the main method, let's print a welcoming message "Hello world!" 

https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/76b7b372-fcd2-4f73-9c48-7876b1fed029


 

19 
 

public static void main(String [] args){ 
   System.out.println("Hello world!"); 
} 
If the top right "run" button is not active, then you'll need to set up the configuration. 

Click on the drop down menu button right next to the "run" button at the top right corner of 
your IDE, and then select Edit Configuration 

Then click on the + sign at the top left corner and select Application 

Then, you'll need to select the Main class that contains the main method for the IDE to know 
where to start. To do so click on the three dots ... next to the Main class edit and then browse to 
the Project tab and select the Main class we just created.  

 

Once you click OK and Apply your changes, the project is now configured and ready to run! 

https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/68052328-6301-4b55-a8cb-b016cc601ecb
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/68052328-6301-4b55-a8cb-b016cc601ecb


 

20 
 

When you run the project you can see that it's first compiling the code and then (if no errors 

exists) it will run and show the output in this bottom panel down here!You can see that it has 

indeed printed the welcoming message "Hello World!" Great! 

https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/68052328-6301-4b55-a8cb-b016cc601ecb
https://classroom.udacity.com/courses/ud283/lessons/008b74dd-d786-4d22-84e6-ace8ae102ba4/concepts/68052328-6301-4b55-a8cb-b016cc601ecb


 

21 
 

Constructors 
Constructors are special types of methods that are responsible for creating and 

initializing an object of that class. 

Creating a constructor 
Creating a constructor is very much like creating a method, except that: 

1. Constructors don't have any return types 
2. Constructors have the same name as the class itself 

They can however take input parameters like a normal method, and you are allowed to create 
multiple constructors with different input parameters. 

Here's an example of a simple constructor for a class called Game 
class Game{ 
   ... 
   // Constructor 
   Game(){ 
      // Initialization code goes here 
   } 
   ... 
} 
 

Default constructor 
A Default constructor is one that doesn't take any input parameters at all! 

It's optional, which means if you don't create a default constructor, Java will 

automatically assume there's one by default that doesn't really do anything. 

However, if the class has fields that need to be initialized before the object can be 

used, then you should create one that does so. 

For example, assume we have a class Game that has an integer member field score, 

we'd like to make sure that any object of type Game will start with the score value set 

to 0. To do so, we need to create a default constructor that will initialize 

the mScorefield 
class Game{ 
   int mScore; 
   // Default constructor 
   Game(){ 
      // Initialize the score here 
      mScore = 0; 
   }       } 



 

22 
 

Parameterized constructor 
As we've mentioned earlier, a constructor can also take input parameters. 

Let's assume that some games start with a positive score value and not just 0, that 

means we need another constructor that takes an integer parameter as an input, 

and uses that to initialize the score variable. 
class Game{ 
   int score; 
   // Default constructor 
   Game(){ 
      score = 0; 
   } 
   // Constructor by starting score value 
   Game(int startingScore){ 
      score = startingScore; 
   } 
} 

Accessing a constructor 

Unlike normal methods, constructors cannot be called using the dot . modifier, 

instead, every time you create an object variable of a class type the appropriate 

constructor is called. Let's see how: 

The new keyword 

To create an object of a certain class, you will need to use the new keyword followed 

by the constructor you want to use, for example: 
Game tetris = new Game(); 

This will create an object called tetris using the default constructor (i.e. tetris will 

have an initial score value of 0) 

To create a game that is initialized with a different starting score you can use the 

second constructor: 

Game darts = new Game(501); 

The null keyword 

If you do not initialize an object using the new keyword then its value will be set to 

something called null. null simply refers to an empty (uninitialized) 

object. nullobjects have no fields or methods, and if you try to access a null object's 

field or call its method you will get a runtime error. 

In some cases, you might want to explicitly set an object to null to indicate that such 

object is invalid or yet to be set. You can do so using the assignment operation: 
Game darts = null; 



 

23 
 

Why multiple constructors? 
You might be wondering why do we still need to keep the default constructor now 
that we have another constructor that can create a game object with any starting 
score value (including 0)? 
Good point, however, it's considered a good practice to always include a default 
constructor that initializes all the fields with values that correspond to typical 
scenarios. Then you can add extra parameterized constructors that allow for more 
customization when dealing with less common cases. 

But we said the default constructor is optional! 

As we've mentioned earlier, you have the option to not create any constructors at 
all! The class will still be valid, and you will be able to create objects using the same 
syntax of a default constructor. Exactly as if you had created an empty default 
constructor. 

However, this privilege goes away once you create any constructor of your own! 
Which means if you create a parameterized constructor and want to also have a 
default constructor, you will have to create that default constructor yourself as 
well. 

Self Reference 
Sometimes you'll need to refer to an object within one of its methods or 

constructors, to do so you can use the keyword this. 

this is a reference to the current object — the object whose method or constructor 

is being called. You can refer to any field of the current object from within a method 

or a constructor by using this. 

Using this with a Field 
The most common reason for using the this keyword is because a field has the 

same name as a parameter in the method or constructor 

For example, if a Position class was written like this 

class Position { 
   int row = 0; 
   int column = 0; 
 
    //constructor 
   Position(int r, int c) {      row = r;       column = c;    }   } 



 

24 
 

A more readable way would be to use the same names (row & column) for the 

constructor parameters which means you will have to use the this keyword to 

seperate between the fields and the paramters: 
class Position { 
   int row = 0; 
   int column = 0; 
 
    //constructor 
   Position(int row, int column) { 
      this.row = row; 
      this.column = column; 
   } 
} 

In the second snippet, the constructor Position accepts the 
parameters row and column, but the class Position also includes two fields with the 
exact same name. 
Using this.row compared to row means that we are referring to 
the field named row rather than the input parameter. 
There are plenty more uses for the keyword this that you can check out here 
(https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html), but they are 
slightly outside the scope of this course. 
 

Example: The Contacts Manager 
The Contacts Manager 

Assume you're writing a Java program that's responsible for storing and managing 

all your friends' contact information. 

We'll start by creating a class that's responsible for storing all contact information of 

a single person, it will look something like this: 

class Contact{ 
   String name; 
   String email; 
   String phoneNumber; 
} 

All fields, no methods, since a contact object itself won't be "doing" much actions 

itself in the scope of this program, it's merely a slightly more advanced data type 

that can store a few strings in 1 variable. 

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html


 

25 
 

Note: Noticed how we used a String to store the phone number instead of 

using int! Can you think of a reason why? 

 

Next, let's create the class that will be in charge of adding and searching for 

contacts. Since it will be managing all the contacts, I'll call it ContactsManager: 

class ContactsManager { 

} 

This class will be storing the contacts in an array, which means one of its fields will 

be an array of Contacts, another field will be an int representing the number of 

friends added to the array, this int will help us know where in the array was the last 

contact added so we can continue to add more contacts into the array later as we 

will see. 

This is what the class will look like after adding the fields 

class ContactsManager { 
   // Fields: 
   Contact [] myFriends; 
   int friendsCount; 
} 

Okay, now let's create a default constructor that will initialize those fields. 

 

class ContactsManager { 

   // Fields: 
   Contact [] myFriends; 



 

26 
 

   int friendsCount; 
   // Constructor: 
   ContactsManager(){ 
      this.friendsCount = 0; 
      this.myFriends = new Contact[500]; 
   } 
} 

 
The friendsCount starts from 0 and will increment every time we add a new 
contact later. 
The Contact array myFriends (just like any array) needs to be initialized using 
the new keyword and we chose to reserve enough space in the array to store up 
to 500 contacts. 
 
Next, let's start adding methods to the ContactsManager class that allows adding 
and searching for contacts in the array. 
 
 

The ContactsManager class methods 

 
The first method we will create in the ContactsManager class is 

the addContactmethod which will add a Contact object to the Contact 

array myFriends: 

 
   void addContact(Contact contact){ 
      myFriends[friendsCount] = contact; 
      friendsCount++; 
   } 

 

The method addContact takes a Contact object as an input parameter, and uses 

the friendsCount value to fill that slot in the array with the contact that was passed 

into the method. 

Then, since we need to move that counter to point to the following slot in the array, 

we increment friendsCount using the increment operation ++ 

 

Now, let's add another method called searchContact that will search through the 

array using a name String and return a Contact object once a match is found: 
Contact searchContact(String searchName){ 



 

27 
 

   for(int i=0; i<friendsCount; i++){ 
      if(myFriends[i].name.equals(searchName)){ 
         return myFriends[i]; 
      } 
   } 
   return null; 
} 

 

This method loops over the array, and for each element myFriends[i] it compares 

the name field to the searchName value using this if statment: 
if(myFriends[i].name.equals(searchName)) 

This if statement will evaluate to true if the searchName is equal to the name field in 

the Contact stored in myFriends[i]   If it was a match, the loop will return the 

matching Contact object myFriends[i]. Otherwise. it will return null indicating that it 

could not find that contact. Putting all this together, our ContactsManager class will 

look like this: 
class ContactsManager { 
   // Fields: 
   Contact [] myFriends; 
   int friendsCount; 
 
   // Constructor: 
   ContactsManager(){ 
      friendsCount = 0; 
      myFriends = new Contact[500]; 
   } 
 
   // Methods: 
   void addContact(Contact contact){ 
      myFriends[friendsCount] = contact; 
      friendsCount++; 
   } 
 
   Contact searchContact(String searchName){ 
      for(int i=0; i<friendsCount; i++){ 
         if(myFriends[i].name.equals(searchName)){ 
            return myFriends[i]; 
         } 
      } 
      return null;  }   } 

To be able to run this program, we need the main method, so let's create another 

class called Main that will hold this method: 

 



 

28 
 

class Main { 
   public static void main(String [] args){ 
      ContactManager myContactManager = new ContactManager(); 
   } 
} 

 

This means that once this program runs, the main method will start which will create 

the ContactManager object myContactManager and thus ready to be used. 

However, if you go ahead and run this program nothing will appear because we we 

haven't created the logic to ask the user for adding or searching contacts yet. 

Later on in this course, we will see how to read input from the user to make this 

program more powerful. 

Programming Quiz 
Now it's your turn, go ahead and create the ContactsManager program on your 
computer, then in the main method write the following: 

1. Create a ContactsManager object called myContactsManager using the default 
constructor (we've already done so in the previous page) 

2. Create a new Contact variable 
• Set the name to a friend's name 
• Set the phoneNumber field to their phone number 
3. Call the addContact method in myContactsManager to add that contact 
4. Repeat steps 2 and 3 for 4 more contacts 
5. Search for a contact using the method searchContact and print out their phone 

number. 
Once you're done, go ahead and submit a comment on what was your biggest 
challenge completing this exercise. If you are completely stuck check the solution 
in the next page. 

Solution: Contacts Manager 

 



 

29 
 

Here's a sample solution on how to use the ContactsManager object in 

the main method: 

 

public static void main(String [] args){ 
   // Create the ContactsManager object 
   ContactsManager myContactsManager = new ContactsManager(); 
   // Create a new Contact object for James 
   Contact friendJames = new Contact(); 
   // Set the fields 
   friendJames.name = "James"; 
   friendJames.phoneNumber = "0012223333"; 
   // Add James Contact to the ContactsManager 
   myContactsManager.addContact(friendJames); 
   // Create a new Contact object for Cezanne 
   Contact friendCezanne = new Contact(); 
   // Set the fields 
   friendCezanne.name = "Cezanne"; 
   friendCezanne.phoneNumber = "987654321"; 
   // Add Cezanne Contact to the ContactsManager 
   myContactsManager.addContact(friendCezanne); 
   // Create a new Contact object for Jessica 
   Contact friendJessica = new Contact(); 
   // Set the fields 
   friendJessica.name = "Jessica"; 
   friendJessica.phoneNumber = "5554440001"; 
   // Add Jessica Contact to the ContactsManager 
   myContactsManager.addContact(friendJessica); 
 
   // Now let's try to search of a contact and display their phone number 
   Contact result = myContactsManager.searchContact("Jessica"); 
   System.out.println(result.phoneNumber); 
 
} 
 
 
 



 

30 
 

Access Modifiers 

Let's face it, we all make mistakes and an innocent mistake in some 
program can lead to catastrophic results. So, it is imperative that we 
protect ourselves from our own.  

 

 

A well-designed Java code is one that wouldn't even allow you to create 
bugs by mistake. One thing that can help is using the correct access 
modifiers. Think of it as if you're uploading photos to the cloud.  Some of 
them you'd like to make public and share with others, while other photos 
are more of a personal nature and you'd like to keep them private.  

 

Well, in Java, you can label a field or a method with either public or private. Making a field or a 
method public, means that other classes can access it. Private ones are meant to be kept 
hidden from the rest of your program and can only be used inside the class that created it. 

Simply, adding the keyword private or public right before declaring the field or the method 
defines where it can be accessed.  Let's have a look at some of the examples. 

 

 



 

31 
 

Fields (public vs private) 
To label a field as private or public simply add the modifier just before the field type when 
declaring it: 

public int score; 
private String password; 
You always have the final call on which fields you'd want to make public vs private, and it 
always depends on the purpose of the field as well as the overall design of your code. 

However, it's strongly recommended in Java to label ALL fields as private: 
For example , when defining a Book class, instead of saying: 

class Book{ 
   String title; 
   String author; 
} 
A proper way would be to define everything private, and only initialize them in the construtor. 

class Book{ 
   private String title; 
   private String author; 
   public Book(String title, String author){ 
      this.title = title; 
      this.author = author; 
   } 
} 

This way you can guarantee that once a book object has been created, the title and author 
will never change! 

But sometimes you need to have fields that can be modified by other classes. 

For example, if we wanted to keep track of whether a Book is being borrowed or not, you 
can add a public boolean field to do so: 

public class Book{ 
   private String title; 
   private String author; 
   public boolean isBorrowed; 
   public Book(String title, String author){ 
      this.title = title; 
      this.author = author; 
   } 
} 
 



 

32 
 

This will work, since you will be able to do something like this from anywhere in your project: 

book.isBorrowed = true; 
However, it's still slightly risky, and you could end up mistakingly setting the boolean to true 
when you only meant to check if it was true or false! 

A better design would be to declare that field as private and then create public methods that 
return the value of such hidden field (known as getters) as well as public methods that provide 
a way to set or change its value (known as setters) 
public class Book{ 
   private String title; 
   private String author; 
   private boolean isBorrowed; 
   public Book(String title, String author){ 
      this.title = title; 
      this.author = author; 
   } 
   public void borrowBook(){ 
      isBorrowed = true; 
   } 
   public void returnBook(){ 
      isBorrowed = false; 
   } 
   public boolean isBookBorrowed(){ 
      return isBorrowed; 
   } 
} 
Setting the isBorrowed field as private will prevent you from mistakenly changing its value 
somewhere in the code, because the only way to change it now is to call 
either borrowBook() or returnBook() which is much more explicit. 
And to be able to read the value of isBorrowed, we've created a getter method 
called isBookBorrowed() that is public and simply returns the value of isBorrowed 

Summary 
• Always try to declare all fields as private 
• Create a constructor that accepts those private fields as inputs 
• Create a public method that sets each private field, this way you will know when you are 

changing a field. These methods are called setters 
• Create a public method that returns each private field, so you can read the value without 

mistakingly changing it. These methods are called getters 
 
 



 

33 
 

Methods (public vs private) 
With methods, it's common to have a mix of private and public methods. 

The private methods are usually known as helper methods, since they can only be 

seen and called by the same class, they are usually there to organize your code and 

keep it simple and more readable. 

The public methods are the actual actions that the class can perform and are pretty 

much what the rest of the program can see and call. 

Here's an example of when you'd want to use public methods vs private methods 

 

class Person{ 
   private String userName; 
   private String SSN; 
   private String getId(){ 
      return SSN + "-" + userName; 
   } 
   public String getUserName(){ 
      return userName; 
   } 
   public boolean isSamePerson(Person p){ 
      if(p.getId().equals(this.getId()){ 
         return true; 
      } 
      else{ 
         return false; 
      }  
   } 
} 
The class Person has both its fields set to private because if they were public then any other class 
will be able to change such sensitive information. Setting them to private means that only 
methods and constructors inside this class can do so! 
The method getId() was also set to private so that no other class can know the social security 
number of any person. 
However, we were still able to use that method internally when comparing this person with 
another person object in the isSamePerson(Person p) method. 
This means that any other class can only call getUserName or isSamePerson and will seem as if 
these are the only 2 methods provided by the class Personز 
 



 

34 
 

Public classes 
Even classes can be labeled as public or private! And even though you are allowed 

to label a class as private, it requires you to know about nested classes 

(https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html)  which is not 

covered in this course. 

So for now, make sure you label all your classes public. 

 

What if I don't use any label at all? 

We've been doing that so far anyway! What does that mean? 

It's not recommended to do so, but if you do, it will default to something called 

"package public" which means it's as if you've labeled them public but only to the 

classes that are in the same package/folder. We will learn more about packages 

later. But again, it's always a good idea to label everything explicitly. 

 

But but but 

... wait a second! Since I have access to all the code, can't I just go back and change 

all the private methods and fields and make everything public and control the 

universe! 

Yes, but remember that this is for your own good. You're trying to design your code 

in a way that will prevent you from doing things you don't want to happen! You're 

also most likely going to be working with a team of other developers and setting the 

correct access modifiers helps communicate with everyone the intended use of each 

part of your project. 

Summary 

To summarize, it's recommended to: 

• Set all your classes to public 
• Set all your fields to private 
• Set any of your methods to public that are considered actions 
• Set any of your methods to private that are considered helper methods 

 

 

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html


 

35 
 

Quiz : Access Modifiers  

 

 

Conclusion:  

o By now you know a fair bit about object-oriented programming and how to 
create classes and objects, also how to use them to design better programs. 

 

o You've also learned that any class is made up of constructors, fields, and 
methods and you know how to hide or share any parts of a class using access 
modifiers by sending them to either public or private.  

 

 

In the next lesson we'll start building more interactive programs by accepting and 
handling user input. We'll also get to write code that reads and writes directly into 
text files which can be stored permanently on your computer. 

 

 



 

36 
 

Part Two: User Interaction 
 

Reading User Input 

To build a useful job application you'll want to make it as interactive and fun as possible. That 
means allowing the user to provide information at runtime. For example, for a context manager 
application it has some useful methods but to use them we had to write all the code in the main 
method including all your friends' contact details. 

I don't know why anybody would want to do that. I sure wouldn't. We certainly shouldn't be 
asking users to write Java code and recompile it every time they want to make a change. That 
would be crazy. 

 Instead Java allows you to accept input from the user while the program is running. That means 
we can write our main method in such a way that ask the user to input their friends' names and 
phone numbers and chat IDs and all that cool stuff and simply pass that information on to be 
stored. Let's have a look at how to do that in Java. 

   

Runtime Inputs 
There are 4 different ways a Java program can read input from the user: 

1. Runtime input 
2. Files 
3. Command line arguments 
4. Graphical User Interface (GUI) 

We will be covering the first 3 types in details this lesson, and you will need to use all of them 
to complete the project. 

GUI 

GUI (Graphical User Interface) is a totally different story and won't be covered in this course. In 
short, it allows you to create buttons and move images and colors. It certainly makes any 
application you build look much cooler, so it's worth checking out. 

Java for Android 

If you are planning to use Java mainly to build Android applications then don't worry about 
learning any GUI yet. Android has its own layout system and it's really easy to learn. 
 



 

37 
 

Input Scanner 
The most flexible and common way to read an input from a user is by asking them to type in 
something and wait till they respond. 

Just like we've seen how this command will print "Hello World" to the command line as an 
output: 
System.out.println("Hello World!"); 
You can also ask the user to type in a message and then your Java program can read it into a 
variable and use it. 

This is done using a Java class called Scanner. 
First, to be able to access this class, you have to point your program to the java.util library that 
includes the Scanner class. You do that by typing this at the very top of the file 

import java.util.Scanner; 
We will talk more about including packages and libraries later on in this course. 

A Scanner allows the program to read any data type from a particular input, if we create the 
scanner object like this: 
Scanner scanner = new Scanner(System.in); 
Then the scanner will be reading from the System's input (hence System.in) which is basically 
the command line. 
It will continue to read whatever the user is typing until they hit "enter" then the program 
continues to execute. 

Once the scanner object has been created, you can use it to read a String, an integer or an 
entire line. 

Calling the method nextLine() in that scanner object will return a String that contains everything 
the user has typed in before they hit "enter". 
scanner.nextLine(); 

For example: 

System.out.println("Enter your address: "); 
Scanner scanner = new Scanner(System.in); 
String address = scanner.nextLine(); 
System.out.println("You live at: " + address); 
 
The above code will wait until the user types in their address, then stores it into the 
variable address and then prints it back to the user. 
Go ahead and try it out yourself! You should get an output that looks like this: 

 

https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/55445d3a-d0e1-4ab2-a1e5-9234948e3614


 

38 
 

 

 

If you want to read a number into an integer variable instead of the entire line: 

System.out.println("Enter your grade: "); 
Scanner scanner = new Scanner(System.in); 
int grade = scanner.nextInt(); 
if(grade > 90){ 
   System.out.println("Wow! you did well!"); 
}else{ 
   System.out.println("Not bad, but you can do better next time!"); 
} 
 

Guess the number game 
 

In this example, we will get to use the input scanner to build a guessing game where the 
computer will generate a random number between 1-100, and the user gets 10 guesses to find 
out what that number is. 

When the game first starts it prints a few sentences explaining what's going on: 

https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/55445d3a-d0e1-4ab2-a1e5-9234948e3614
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/55445d3a-d0e1-4ab2-a1e5-9234948e3614
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/55445d3a-d0e1-4ab2-a1e5-9234948e3614
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/8c3ebdc6-0b39-419a-aff8-124a0b201dd6


 

39 
 

Then asks the user to guess the number. Once the user types in a number and hits enter, the 
game will compare that guessed number with the random number it had generated and tell the 
user if it's smaller or larger, then they get to guess again. 

 

If the user manages to guess the number before they run out of guesses they win. Otherwise 

they lose! 

 

 

Let's walk through how to create this game step by step ... 

 

 

 

 

 

https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/8c3ebdc6-0b39-419a-aff8-124a0b201dd6
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/8c3ebdc6-0b39-419a-aff8-124a0b201dd6
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/8c3ebdc6-0b39-419a-aff8-124a0b201dd6
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/8c3ebdc6-0b39-419a-aff8-124a0b201dd6


 

40 
 

Building the game 
 

In this example we'll use the input scanner to build a guessing game. The computer will 

generate a random number between 0 and  100 the user gets  guesses to find what that 

number is. 

When the game first starts, it prints a few sentences explaining what's going on then it asks the 

user to guess the number. Once the user types a number and hits enter, the game will compare 

that guessed number to the random number that it generated and it will tell the user if it's 

smaller, larger or if it's the correct number. If the user manages to guess the number before they 

run out of guesses, they win. Otherwise, they lose. 

Okay, the first thing is to create a new project in IntelliJ, and let's call it Number Game. And in 

the source directory, we'll create a new class called Number Game that will include the main 

method and pretty much all the code. Okay, the first thing we need to do is import the scanner 

class from Java.util. 

This will be how we get input from the user and let's create that main method. Let's start by 

randomly selecting a number between 1 and 100 To do so, we'll use Math.random and multiply 

it by 100  The reason why we have to multiply it by 100 is because Math.random creates a 

floating point number between zero and one. To make sure that our number is not zero at any 

point, we need to add one to whatever the output is. And let's put some parentheses just to 

make sure everything is done in the right order. And lastly, this int here takes this floating point 

number that's generated from this portion and throws away the fractional part. Next, let's print 

a message to the user explaining the game. And for sanity check, let's run it at this point and 

also see what's being generated for the random number. That time it printed out, it's selected . 

Let's see they selected . 

 OK. Since the user only has  guesses before they lose, let's create a loop that counts down from  

10 all the way to zero. And inside that loop, the first thing we'll do is show the user how many 

guesses they have left. And if we run this again it will just print a count down of how many 

guesses you have left. 

Well, let's add a message here to say a- choose again, so that they know they need to insert 

something. 

So next, let's create a scanner to read that actual user input. And inside the loop, we'll store 

that in a variable called guess using scanner.nextInt. And what this does is it takes the things 

that you type in and it tries to convert that into an integer. And just to check, let's test that. And 

we can see here that it's actually reading in our guesses. And if we were to type in something 

that can't be turned into an integer that's when we'll get to error.  



 

41 
 

But let's assume that our users are going to follow instructions and only type in things that 

actually can be evaluated to numbers. Once we've read the user's guess and stirred it into the 

variable guess, we can now compare it to the random number that we generated earlier. If the 

random number was smaller than the user's guess, we want to tell them so. I'm using string 

concatenation here to display the value of the guess variable in this output string. 

Let's next check to see if the random number is greater than what the user guessed. And in that 

case, we'll output a message telling them that the random number is greater than the number 

they guessed. For each guess there's another condition that we haven't handled yet. That's the 

one that checks to see if the random number is equal to the guessed number. And in that case, 

we want to signal to the system that the user has won.  

So let's create another variable,a boolean variable has one and let's initially set that to false. 

And here we set it to true. And because a person has won already, we want to break out of that 

loop so that it doesn't prompt them to guess again. 

Now that we've completed our loop we need to check if they actually won or if they ran out of 

guesses. If has won is set to true and we can do these two different ways. We can just use has 

won, because it is a boolean variable or we could do the more verbose has won equals true. 

Both of them work. This form is just a little bit more concise. So if they have won we print out 

the message, "Correct. You win!!!" else, it prints out, "Game over, you lose!" and tells the user 

what the random number was.And let's try that out. 

Let's say 50 and it's greater than 50 . Let's do it 75 , it's greater than 75  but smaller than  90 so 

it's between  75 and 90 . It's greater than 85 . So it's between 85 and 90 . It's 87. It's greater 

than 87 . Between 87 and 90 It’s 89. There you go. 

All right, so our code runs correctly but there are a couple of different things that we can do to 

make this code better. So in our loop we have separate if statements for if the random number 

is less than a guess, if it's greater than the guess and if it equals the guess. 

For any number, it can't be this, all three of these states are multiples of these states. So if our 

random number is 15 , and the guess is one, only one of these is going to be correct. So to avoid 

having each of these if statements be checked each time, we can use else statements so, put 

else if, so if it is smaller, it stops running here. And then, here we'll just do else because if the 

number is neither less than or greater than the random number it has to equal the random 

number. 



 

42 
 

 

 

Interesting fact 
Given 10 chances to guess a number between 1 and 100 (with "smaller than" or 

"greater than" feedback), is more than enough for you to ALWAYS win! 

The trick is to use something called the Binary Search Algorithm It's a very clever 

search technique where you cut your search range by half every time you make a 

new guess: 
• You start with the range [1 - 100] 

https://en.wikipedia.org/wiki/Binary_search_algorithm


 

43 
 

• Always start your first guess as 50 (midpoint between 1 and 100) 
• If the random number was smaller, then it must be between [1 - 50] 
• If the random number was greater, then it must be between [50 - 100] 
• Repeat the same technique by guessing the midpoint of the new range: 

• If the new range is [1 - 50] then guess 25 
• If the new range is [50 - 100] then guess 75 
• And so on, until you get it right. 

In fact, you will only need 7 guesses at most (for the range 1-100). 
Binary Search is a very popular algorithm used by computer scientists all the time. Go ahead 
and try this strategy while playing the game ;) 

 

 

Exercise: Input Scanner 

 

 

 



 

44 
 

File Scanner 
Another way of accepting runtime input is through files, these files can be plain text files that the 
user creates with a very basic text editor (e.g. notepad on windows or TextEdit on macs). 

A good example would be a Java program that loads a list of expenses from a text file (or excel 
sheet) and after some calculations prints a report of the total amount, average spendings, largest 
purchase etc. 

To read a text file in Java you can also use the same Scanner class we used to read command line 
inputs, but instead of passing System.in as the argument you pass a File object which you can 
create by typing in the file name: 
File file = new File("expenses.txt"); 
Scanner fileScanner = new Scanner(file); 
Once the file scanner has been created, you read lines the same way we did earlier. 

But since you would most likely want to load the entire file at once, you can check if the file still 
has more lines using hasNextLine method and then use this loop to read everything: 
while (input.hasNextLine()) { 
   String line = input.nextLine(); 
   // Use that line to do any calculations, processing, etc .. 
} 

 

Word Count 
In this example, we'll use the file scanner to count the number of words in a text file. Let's start 

by downloading a text file. Project Gutenberg (www.gutenberg.org) offers a collection of  public 

domain novels and books that you can use and download for free. Feel free to download your 

favorite book but I'm going to use "A Tale of Two Cities by Charles Dickens. Make sure you 

download the plain text version. 



 

45 
 

Now that we have a text file, let's create a new project in IntelliJ to count the number of words 

in it. So we'll create new project and just leave it as a Java project. And let's call it WordCount. 

And let's create a Java class also called WordCount. We'll need to import two packages at this 

time. One for the Scanner like we did in the previous exercise and another for the File class that 

we'll use to open and read the file's contents.  And let's create our main method.  Before we 

open the text file, we'll need to actually add it to this project. Let's start by creating a file object 

with the name File. And for the parameter, we're going to type in the name of the text file that 

we just added to our projects, taleoftwocities.txt. 

 

When you open a file, you might get a file exception if there is a problem with reading it or if 

the file isn't there. So we'll need to account for  that in our main method by saying that this 

function can throw an exception. Now that we have a file object, we can use a scanner object to 

read its contents. Notice that I've passed the file object to the scanner constructor instead of 

system.in like we did before.  

This is because we want the scanner to scan the text file and not the user's input.  And let's go 

ahead and run this. This isn't going to print out anything but it's a good exercise to run your 

code to make sure that you're on the right path. Cool. We don't have any error messages, so we 

know that everything is working properly. 

 Just for fun, let's change the name of the file to something that we know doesn't exist.  And as 

we can see, it throws an exception, a file not found exception, that it couldn't find a file with 

that name. 



 

46 
 

But let's go ahead and fix that. Once we have the scanner object, we can start reading the file 

line-by-line using the nextLine and hasNextLine methods. And we want the scanner to loop 

through the whole file.  So we'll need to put this in a while loop. Now you probably remember 

that the while loop expects whatever expression is placed between the parentheses to evaluate 

to a boolean. hasNextLine returns true or false.  So it satisfies that already.  

It would be a little bit more redundant to check explicitly if it equals true but that's also a valid 

code. But that's a little bit more code than you need to do, and IntelliJ will give you a message to 

simplify it. So inside of our while loop, we'll look at the contents of each line. So let's create a 

variable called Line that stores scanner nextLine which return to string.  To count the number of 

words in that line,  we'll want to split it, and we'll want to split it on the spaces.  So if we stop 

right here and run our code again, each line of output gives us the array object that was created 

from splitting the line. But that doesn't really give us that much information, so let's look at the 

length.  And now, it will output how many words are in each line. 

 But instead of each line, we want to do this for the whole file. So, we'll need to create another 

variable called words or word count and initialize that to zero to store a word count.  Inside the 

while loop, instead of printing out each time that we check the number of words in a line, we're 

going to add them to the word variable, and add a message printing out the number of words in 

that file. And it says that A Tale of Two Cities has Keep in mind that our definition of a word is 

simply anything that's separated by a space. So the total count could be slightly different from 

other word count shown on text editors, for example, but it should be pretty close. 

Exercise: File Scanner 

 



 

47 
 

Using the terminal 

Running a program in IntelliJ 
So far we've been running our Java projects directly from IntelliJ. The output gets displayed 
in the output pane at the bottom. 

 

 

You can also run any Java program from outside IntelliJ using a command line tool as follows: 

Running a program in Terminal (mac) 
Open the terminal and browse to the location of the IntelliJ project folder: 

There should be a src folder that contains all the .java source files (your code). If you've 

already compiled the project using IntelliJ there should also be an out folder that contains 

a .class file that corresponds to every .java file in the src folder. 

Navigate into that out folder then open the production folder and the NumbersGame folder: 

https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f


 

48 
 

 

 

These .class files are compiled and ready to run. 
To run the class that contains the main method, type in 

Java NumbersGame 
This will start the program displaying the output in the same window and will wait for the user 
to enter their input there as well. 

 

 

 

Running a program via the command line (Windows) 
It's pretty much the same steps as above, however you might need to make sure that Windows 
can find the Java compiler and interpreter: 

1. Select Start -> Computer -> System Properties -> Advanced system settings -> Environment 
Variables -> System variables -> PATH. 

2. Find out which jdk version you have installed by navigating to C:\Program Files\Java and check 
which folders are there. 

3. Add C:\Program Files\Java\jdk???\bin; to the beginning of the PATH variable. 
• Replace the ??? with the folder name from step 2 

 

 

https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/cc82b82e-03ff-47e6-8627-d5d3812c608f


 

49 
 

Command line arguments 
There's one more way a Java program can accept input from the user, and that is before they 
actually run the program! 
Remember the declaration of the main method: 

public static void main(String args[]){ 
} 
Notice that the method accepts a String array called args[] as an input parameter, but we never 
explicitly call the main method ourselves! So what is this String array and where does its value 
ever come from? 
If you end up running the program from the command line, anything you type after the 
program name is considered an input argument. 

For example, if we had a Java program called weather that prints today's weather, running it 
from the command line is as simple as typing in the program name: 

 

 

 

If we wanted the program to be more customizable, we could set it up to accept a city input 
and print the weather there. So to get the weather in Sydney you can type: 
 

 

 

 

The way this works is through the String [] args that's passed to the mainmethod, which means 

inside the main method, the first String in that String array args contains the value "Sydney". 

 

https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/81702c78-2d94-4ee4-a945-bc05c4e66ce6
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/81702c78-2d94-4ee4-a945-bc05c4e66ce6
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/81702c78-2d94-4ee4-a945-bc05c4e66ce6
https://classroom.udacity.com/courses/ud283/lessons/297a7f29-2c0d-4e79-863b-d7c83b4026c1/concepts/81702c78-2d94-4ee4-a945-bc05c4e66ce6


 

50 
 

public static void main(String [] args){ 
   if(args.length==0) { 
      System.out.println("Please specify a location"); 
   } 
   else { 
      String location = args[0]; 
      int temperature = 60 + (int)(Math.random()*10); 
      System.out.println("The weather in "+location+" is "+ temperature); 
   } 
} 
 

You can loop through the args array and collect as many arguments as you want. 

Feel free to read more information on how to read and use the command line arguments 
(https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html) 
Now it's time to try all of these input types in our project 

 

 

Exceptions 
As a programmer, you will most certainly face these three types of errors: syntax 

errors, runtime errors, and bugs. We've already covered syntax errors in the 

previous course, and we've also seen how to find bugs and fix them, but we've only 

briefly touched on what runtime errors mean and how to handle them. So, now it's 

time to go deeper into the runtime errors. 

https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html


 

51 
 

A runtime error is an error that only happens sometimes while the program is 

running. It's usually caused by issues like user entering an invalid input or trying to 

open a file that doesn't exist. 

 

A good Java program should check that any operation is valid before it tries to do 

it, like check that the file actually exists before opening it. If you don't, not only 

will the operation fail, but it might actually cause the entire program to crash. 

That's why in Java, most common runtime errors are formalized into something 

called exceptions. 

An exception is almost like a formal definition of a potential problem. For 

example, a very popular exception is called FileNotFoundException that appears 

whenever you try to open a file that doesn't exist.  



 

52 
 

But how do these exceptions appear and where do they come from? 

Exceptions are thrown around between methods. It all starts when a method tries 

to perform an operation that is invalid. When it realizes that it can't, it creates an 

exception object of the relevant exception class, and throws it to whomever 

catches it. Then those who catch it can either re-throw it again or simply handle it 

gracefully. 

Methods typically communicate with each other using input parameters and 

returning output results. The way they communicate exceptions with each other 

is by throwing them. If a method has the potential of running into an invalid 

situation like opening a file that might not exist, it has to state that it might throw 

an exception. This is done by adding the throws keyword followed by the 

exception type when declaring that method.  

 

Once you've declared that a method throws an exception, Java forces you to 

surround that method with a try clause every time you try to call it. 



 

53 
 

This simply means that you are aware that this method might throw an exception 

at any time. To handle that exception, you will also need to follow it with a catch 

block. Whenever that exception is thrown, the code would jump right into that 

catch block and run whatever's inside it.  

Most exceptions are already built in Java libraries like the file class that were used 

earlier. So, usually, all you have to do is just surround those methods with a try 

catch block, and handle the exception anyway you want. The most common way 

to handle an exception is to print a message to the user, explaining what went 

wrong and asked them to maybe try again or check their setup. 

 

You may also choose to re-throw that exception or even not surround it with a try 

catch at all, and instead declare that this method itself throws an exception.  

You can actually continue to do so all the 

way up to the main method and declare the main 

method to throw an exception itself. However, that 

will mean that if such exception does get thrown, it 

will end up all the way back to the user causing the 

program to end with an unhandled exception 

method, not the most user-friendly experience I 

bet. So, it is always a good idea to handle any 

possible exception somewhere inside your code. 



 

54 
 

Handling exceptions 
Catching exceptions 
Inside the catch block you have the choice of either handling the situation quietly 
(like printing an error message or showing a warning popup) 
 

try{ 
   openFile("somefile.txt"); 
} catch(FileNotFoundException exception) { 
   // Handle the situation by letting the user know what happened 
   System.out.println("Cannot find that file"); 
} 
 

OR you can elude the situation and just re-throw the exception: 

try{ 
   openFile("somefile.txt"); 
} catch(FileNotFoundException exception) { 
   // Running away from the responsibility  
   throw exception; 
} 
However, re-throwing the exceptions means that whoever is calling "this" method 
will now have to surround it with another try-catch block and do the same! 

Multiple catch statements 

Since a try block can include more than one statement, and methods can actually 
throw more than one type of exceptions, you sometimes end up having to cater for 
different types of exceptions at the same time: 

try{ 
   openFile("somefile.txt"); 
   array[index]++; 
} catch(FileNotFoundException exception) { 
   // Handle all the possible file-not-found-related issues here 
} catch(IndexOutOfBoundsException exception) { 
   // Handle all the possible index-out-of-bounds-related issues here 
}  



 

55 
 

You can have as many catch statements as you need until you cover all possible 
Exception types that could be thrown inside the try statement. 

Catching all exceptions 

Another option is to simply catch ALL exception types by catching the general 
type Exception, this means that whatever exception is thrown within this try-
catch block, it will be caught and handled in this catch statement 

try{ 
   openFile("somefile.txt"); 
   array[index]++; 
} catch(Exception exception) { 
   // Handle all the possible exceptions here 
}  
 

Quiz: Exceptions 
This code was meant to ask the user for a month number and print out the month's 

short name that corresponds to that number! 

Read the code carefully and then try to answer the questions below. 

public static void main(String[] args) { 
    String[] months = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", 
                       "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; 
    Scanner scanner = new Scanner(System.in); 
    try { 
        int month = scanner.nextInt(); 
        System.out.print(months[month]); 
    } catch (IndexOutOfBoundsException exception) { 
        System.out.print("Index is out of bounds"); 
    } catch (InputMismatchException exception) { 
        System.out.print("Input mismatch");     } } 



 

56 
 

 

 

 



 

57 
 

Part 3: Project 2: Guess The Movie 
Ok, it's time to build your own project in Java, this time you'll be completing a game where the 
player gets to guess the movie name given the number of letters in it (pretty much like hangman 
but with movies)! 

The rules are simple, the computer randomly picks a movie title, and shows you how many letters 
it's made up of. Your goal is to try to figure out the movie by guessing one letter at a time. 

If a letter is indeed in the title the computer will reveal its correct position in the word, if not, you 
lose a point. If you lose 10 points, game over! 

BUT the more correct letters you guess the more obvious the movie becomes and at a certain 
point you should be able to figure it out. 

The program will randomly pick a movie title from a text file that contains a large list of movies. 

You can download a sample text file to play with from the resources tab or create your own list 
of movie titles. 

Once the computer picks a random title, it will display underscores "_" in place of the real letters, 
thereby only giving away the number of letters in the movie title. 

 

 

 

Then it will wait for the player to enter their first letter guess. 

If the letter was indeed in the word, the underscores "_" that match that letter will be replaced 
with the correct letter revealing how many letters have matched their guess and where they are. 

 

https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06


 

58 
 

 

If their guess isn't in the movie title, then the output will display the same output as the previous 

step as well as any letters that have been previously guessed wrong. 

Eventually, if the player manages to guess all the letters in the movie title correctly before they 
lost 10 points, they win 

https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06
https://classroom.udacity.com/courses/ud283/lessons/fbea4b4b-485d-4eb6-b010-c01241944726/concepts/3b5d67c0-4010-44ae-a164-448854171e06


 

59 
 

Everything you need to know to be able to build this game should be covered in the previous lessons, 

but of course that doesn't mean it has to be easy! It's ok to get stuck and it's absolutely normal for 

things to not work from the first time. 

Just take it step by step, build a small part of the game first, test it and make sure it works and 
then continue to add more to it. 

Aaaand, whenever you reach a roadblock, head to the forum straight away, there are tons of 
other students and mentors there that will be more than happy to help. 

Download the movie list from here (https://bit.ly/2Nbprvg), and start coding. Good luck :) 

 
 
 
 
 
 

Hints to help building Guess The Movie game 

Game play hints 

In English, the top 5 frequency of letters is e t a o i. It can help you play this game after you 
finish it. 
It's an important study in Cryptanalysis. More info about this, please read Letter frequency 
from Wikipedia(https://en.wikipedia.org/wiki/Letter_frequency). 

Use classes 

This program will have more code than all of the exercises we've previously covered, so it's a 
good idea to divide your code into classes instead of writing everything in 1 class 

A simple design would be to have at least one more class called Game that will include methods 
responsible for handling a single guess or displaying the hidden movie title etc. 
Then have another class that contains the main method and controls the logic of reading the 
user's input and calling the methods in the Game class 

Build it step by step 

Don't rush into building the entire game at once, start small, for example: 

1. Write some code that will simply read the movie list and display the whole list. 
2. Then add to your code to randomly pick one movie and display that title only. 
3. Then convert its letters to underscores (_) and display that instead, and so on. 
4. Once you've got that part done start reading the user's input and search for it in the title. 
5. Work on revealing the correct letters and displaying them. 
6. Add the logic to keep track of wrong letters so they don't lose points for guessing the same 

letter twice. 

https://s3.amazonaws.com/video.udacity-data.com/topher/2017/December/5a3732ea_movies/movies.txt
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency


 

60 
 

7. After that, you can keep track of how many wrong guesses and end the game if they lose. 
8. Finally, detect when they have guessed all the letters and let them know they've won! 

You can also start by hard coding a single movie title in the code instead of randomly picking 
one from the file, then add the file reading functionality at the end. 

Test often 

Every time you add new code that does something new, test it. 

The best way to do so is to use System.out.println() everytime you add new functionality to test 
the output of that part. 
Make sure when testing to try all possible cases that you can think of (what if the user tries to 
guess a space character? what if they type in a number? etc) 

If you test often while building your code you will end up with fewer bugs as you get closer to 
finishing it. 

String methods 

Check out all the powerful methods that Java has already written for 
you here(https://docs.oracle.com/javase/7/docs/api/java/lang/String.html). 
Knowing the capabilities of your programming language can save you hours and even days of 
re-writing code that already exists 

For example: 

To find if a letter exists in a String, instead of creating a loop to compare each character you can 
use the indexOf() method which returns the position of such character in the String. 

 

 

 

 

 

 

 

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


 

61 
 

Part 4: Inheritance 
 

There's More to OOP 
 

As the title suggests, there's more to OOP than just dividing your code into classes.   

OOP is all about designing your code in a way that’s easy to understand but more 

importantly, easy to extend and add more features to.   

 

To understand how to design a good Java program, you need to know some of the 

core principles of object-oriented programming.  One of them is called 

encapsulation, which means that each class is just like a capsule that contains 

everything it needs and nothing more.  

 

Another important concept is polymorphism. A pretty complicated word, as you 

can tell, that basically means multiple shapes or forms. Polymorphism defines how 

Java objects can have multiple identities.  That way, you can group different objects 

as if they’re all the same type under certain conditions.  

 

But perhaps, the most significant of all is inheritance. Inheritance in Java is just 

similar to inheritance in real life. It means passing down traits or characteristics 

from a parent to their child, like eye and hair color features or facial features.  

 

Classes can not only use other classes, but they can also inherit from them and 

extend their capabilities. Inheritance is crucial in designing a good Java program 

because it saves you time in writing code and keeps things consistent and well-

organized. So, let's see what it's all about and how to use it.   

 

 



 

62 
 

Inheritance 
 Assume you're building a Java program that manages your bank accounts. You 

have three different types of accounts and each has its own properties. They all 

share some similar information like the account number and the balance in them, 

but they all have different attributes as well. A typical checking account, for 

example, may have a credit limit. A savings account may limit the number of 

withdrawals to say six withdrawals per month.  A certificate of deposit doesn't even 

allow any withdrawals until after a certain expiry date. 

  

If you want to implement that in Java, you could basically implement everything in 

one single class, called bank account, and maybe use a field called account type 

that identifies which type each object is but that means you'll have to include 

everything in that class  , and hence in each object that comes from it which means 

that sometimes it will make    sense to have an expiry date for    a savings account 

or a withdrawal limit for a checking  account.   



 

63 
 

 Another option is to create a class for each account type. That way, each class 

would contain, only the fields and methods that make sense for that class. But this 

also means that all this common area is repeated throughout the three classes. If 

we decide to also include the bank code, for example, we'll have to change that in 

all three classes. It might not seem too much here but in a production sized Java 

project this simple change could be a nightmare. 

 

So, can we actually do any better?   

Yes. Java allows classes to extend other classes and build on top of them. This is 

called inheritance. Let's see how to use that here. If we start by creating a basic 

bank account class that contains all the common fields and methods we can then 

create a class for, each different type and point them to extend that basic class.   

Each would have its own unique fields and methods while they all share the same 

basic attributes. To implement this in Java, you'll start by creating the bank account 

class and then create another class and point it to extend  that basic class by adding 

the phrase , extends and then the class name 



 

64 
 

which in our case is bank account. The class that you're extending from is referred 

to as the parent class. The one that is extending that parent is known as the child 

class.  

Just by extending a class everything that is included in that parent class is now part 

of that child class as well. Even though it doesn't appear in the code, all the fields 

and methods that belong to the parent class, in this case the bank account  , are as 

if they were listed in the child class itself.     

 

This way, we can then create another class for    the savings account and have its 

own attribute in it and then another class for the certificate of deposit which also    

extends the bank account and have its own attribute in there as well.   

 

 

You can see from that example that using inheritance has allowed us to minimize 

repeating    any code while still having    the flexibility and the good design of  

separate account classes. 

 

 

 

 

 

 

 



 

65 
 

Exercise: Designing the BankManager application 
 

Now it's your turn, open IntelliJ and start a new project called BankManager that 

will contain the following classes: 

1. CheckingAccount 

2. SavingsAccount 

3. CertificateOfDeposit 

Make sure they all extend from the same class called BankAccount that includes all 

the common fields. 

Don't worry about implementing any of the methods for now, just leave them all 

blank. This exercise is mainly focusing on designing the code rather than writing 

any logic code. 



 

66 
 

Polymorphism 
Polymorphism literally means something having multiple shapes or forms. In 

object-oriented world, inheritance has allowed object to become polymorphic.    

Because when an object extends another class, it not only becomes its own type 

but also the type of its parent.   

Imagine a class called person, that has a name and an email as fields. Now, if we 

have two more classes, teacher and student that inherit from that class using the 

extends keyword then each of   those classes would automatically contain    those 

fields along with any extra fields each of them has.  

 

Perfect. So, if you were to create an object of type student, you can start declaring 

it using    the student type and initialize it using the student constructor.    And for 

the teacher you could declare it using    the teacher type and initialize it using the 

teacher constructor.  



 

67 
 

But, remember that both teacher and student are extending the class person.    So, 

they are by default of type person as well,  as the defined type of each.    In fact, 

you can declare both the student and the teacher as of type person and still 

initialize each of them using their own constructor. This flexibility allows you to 

treat children objects as if they were the types of their parent and still use all the 

functionality inside the child class itself.     

 

 

Okay, but is that really that helpful?    

 Yes. Throughout the remaining of this lesson, you'll see why. But for now, let's look 

at this scenario.  

 

Imagine, you're working with a team of Java developers building    a game that 

involves a bag of items that they can carry with them. However, the bag can only 

carry a total weight of kilograms. 

 

You are the developer that is responsible for implementing the logic, that checks if 

you can add another item to the bag or not?    While the other team members are 

still coming up with what these items will be.  



 

68 
 

So far, they've created a bunch of different classes for each of the items. A 

crossbow, a key, a rare item, and some coins. But because they're good Java 

developers, instead of including the integer weight attributes in each of those 

classes, they've decided to extend a single class called item, which includes that 

attribute. 

 

And then, each of the children classes can have its own extra attribute. But, how is 

that going to help you?   

Well, when you get to implement the class bag which includes the method, can add 

item, you can define the input parameter to be of type item. And this will magically 

work for any of the child classes that extend from the class item. Which means you 

only need to implement this method once. And in that implementation, all you 

have to do is access the item.weight attribute.    And because all the children classes 

that extend    from item will include that attribute by default, this method will just 

magically work for any of the existing items. These 2 examples of bag.java class.  



 

69 
 

So, let's say in the main method you decide to declare a variable of type cross-bow, 

and then you can pass that cross-bow variable into the can add item method of the 

bag class just directly without even casting it to the item class.  And because, cross-

bow extends    the item class it would definitely have the weight attribute inside it.    

 

Not only that, but imagine sometime in the future    they come up with this new 

item class called Map, which also extends from the item class.    You can in fact pass 

in that variable directly as    well without changing anything in the can add item 

method.    Amazing, isn't it?    Well, that's just part of what polymorphism allows 

you to do in Java.   

 

   

 



 

70 
 

Quiz: Polymorphism 

 

 

 

The Chess Example 
We've seen how Inheritance allows you to extend classes and add more 
functionality to them. 

Sometimes you not only want to extend the functionality of a class, but also modify 
it slightly in the child class. For example, say you're building a Java chess game. 



 

71 
 

A good Java design will have a class for each piece type: 

 
And they should all inherit from a common base class: Piece 
 

Why? 

Because according to the concept of polymorphism, you could represent the chess-

board as a 2D array of Piece objects, and then each cell in the 2D array can contain 

any of the child classes that extend the Piece class. 

 

Other classes 

To store this 2D array we will need a class that represents the Game itself: 

class Game{ 
   Piece [][] board; 
   // Constructor creates an empty board 
   Game(){ 
      board = new Piece[8][8]; 
   } 
} 
And finally, a simple class called Position that has nothing more than a row value 
and a column value to represent a specific slot on the board. 
class Position{ 
   int row; 
   int column; 
   // Constructor using row and column values 
   Position(int r, int c){ 
      this.row = r; 
      this.column = c; 
   }     } 



 

72 
 

That way, the Piece class can include a field variable of type Position that stores 
the current position of that piece on the board: 
 
class Piece{ 
   Position position; 
} 
 
Now, since all piece types inherit from the same parent class Piece, they will all 
share any methods declared in that class. 
For example: 

It will be useful to have a method that checks if a potential movement of a piece 
is a valid one. Even though each piece type has a unique movement capability, 
any piece (regardless of its type) has to - at the very least - stay within the bounds 
of the chess board. 

So, a good idea would be to include a method called isValidMove inside 
the Piececlass that takes a potential new position and decides if that position is 
within the bounds of the chess board. 
 
class Piece{ 
   boolean isValidMove(Position newPosition){ 
      if(newPosition.row>0 && newPosition.column>0  
         && newPosition.row<8 && newPosition.column<8){ 
         return true; 
      } 
      else{ 
         return false; 
      } 
   } 
} 
 
Since each of the child classes inherits from that Piece class, each will automatically 
include this method, which means you can call it from any of those classes directly. 
For example: 

 

 



 

73 
 

Queen queen = new Queen(); 
Position testPosition = new Position(3,10); 
if(queen.isValidMove(testPosition)){ 
   System.out.println("Yes, I can move there."); 
} 
else{ 
   System.out.println("Nope, can't do!"); 
} 
 

 

QUIZ QUESTION 

 

 

 

What we've done so far can be considered as a good start for checking the validity 
of the movement of a piece on the board. However, each piece type has a different 
pattern of allowed movements, which means that each of those child classes needs 
to implement the isValidMove method differently! 
Luckily, Java not only offers a way to inherit a method from a parent class but also 
modify it to build your own custom version of it.  

Let's see how? 



 

74 
 

Overriding methods 
When a class extends another class, all public methods declared in that parent 
class are automatically included in the child class without you doing anything. 

However, you are allowed to override any of those methods.  
Overriding basically means re-declaring them in the child class and then re-
defining what they should do. 
Going back to our chess example, assume you're implementing 
the isValidMovemethod in the Rock class. The Rock class extends the Piece class 
that already includes a definition of the isValidMove method. 
 
class Piece{ 
   boolean isValidMove(Position newPosition){ 
      if(newPosition.row>0 && newPosition.column>0  
         && newPosition.row<8 && newPosition.column<8){ 
         return true; 
      } 
      else{ 
         return false; 
      } 
   } 
} 
Now let's implement a custom version of that method inside the Rock class: 

class Rock extends Piece{ 
   boolean isValidMove(Position newPosition){ 
      if(newPosition.column == this.column || newPosition.row == this.row){ 
         return true; 
      } 
      else{ 
         return false; 
      } 
   } 
} 
Notice how both method declarations are identical, except that the 
implementation in the child class has different code customizing the validity check 
for the Rock piece. Basically it's checking that the new position of the rock has the 
same column value as the current position (which means it's trying to move up or 



 

75 
 

down), or has the same row position which means it has moved sideways, both 
valid movements for a Rock piece. 

Remember that this.position.column and this.position.row are the local fields of 
the Rock class holding the current position of that piece. 
We can also do the same for all the other piece types, like for example the Bishop 
class would have slightly different implementation: 

 
class Bishop extends Piece{ 
   boolean isValidMove(Position newPosition){ 
      if(Math.abs(newPosition.column - this.column) == Math.abs(newPosition.row 
- this.row)){ 
         return true; 
      } 
      else{ 
         return false; 
      } 
   } 
} 
 

For the Bishop, since it can only move diagonally, we'd want to check that the 
number of vertical steps is equal to the number of horizontal steps. That is, the 
difference between the current and new column positions is the same as the 
difference between the current and new row positions. 

I've used Math.abs which takes the absolute value of that difference to always be 
a positive value, allowing this check to work for all 4 diagonal directions. 
Perfect, now try to override this method for the Queen class, remember, a Queen 
can move diagonally or in straight lines. 
 
 
 
 
 
 
 



 

76 
 

Programming Quiz: Override 

 

 

 

Super 
SUPER! Not only because you managed to solve that exercise, but "super" is 
actually another Java keyword that we will be using next! 

It is important to note that once you override a method, you basically ignore 
everything that was in the parent class and instead have your own custom 
implementation in the child class (literally overwriting it)! 

In our case, we don't want to throw away the parent implementation. We actually 
want to continue to use the original method, and ADD the extra checks for each 
child class individually. 

This is where we get to use the "super" keyword! 

You are allowed to re-use the parent method in the child class by using the "super" 
keyword, followed by a dot and then the method name: 

super.isValidMove(position); 



 

77 
 

Using the keyword super here means that we want to run the actual method in the 
super (or parent) class from inside the implementation in "this" class. 

Which means in each of the child classes, before you get to check the custom 
movement, you can check if super.isValidMove(position) has returned false. If so, 
then no need to do any more checks and immediately return false; otherwise, 
continue checking. 
The new implementation for the Rock class will look like this: 

class Rock extends Piece{ 
   boolean isValidMove(Position newPosition){ 
      // First call the parent's method to check for the board bounds 
      if(!super.isValidMove(position)){ 
         return false; 
      } 
      // If we passed the first test then check for the specific rock movement 
      if(newPosition.column == this.column && newPosition.row == this.row){ 
         return true; 
      } 
      else{ 
         return false; 
      } 
   }    } 
You can also use super() to call the parent's constructor. This is usually done when 
implementing the child's constructor. Typically, you would want to first run 
everything in the parent's constructor then add more code in the child's 
constructor: 
class Rock extends Piece{ 
   // default constructor 
   public Rock(){ 
      super(); // this will call the parent's constructor 
      this.name = "rock"; 
   } 
} 
Note: If a child's constructor does not explicitly call the parent's constructor using 
super, the Java compiler automatically inserts a call to the default constructor of 
the parent class. If the parent class does not have a default constructor, you will 
get a compile-time error. 



 

78 
 

QUIZ: Move Method 

 

Multiple Inheritance 

You have seen how extending a class can be so powerful. However, there is one 

major limitation in Java. class can only extend one single class. In other words, a 

class can only have one parent.  That's because multiple inheritance can cause   

ambiguity if the parents had similar methods. Java's solution for this is interfaces. 

So, let's have a look at what an interface is and how to use one.   

Extending a class is extremely helpful in many occasions: 

1. Extending the capability of a class without making any changes to it. 
2. Sharing some common code between variations of that class. 
3. Leveraging polymorphism to treat different classes as if they were the same. 

However, there is 1 major limitation in Java: A class cannot extend more than 1 
class (i.e. multiple inheritance is not allowed in Java). 

Why? Because multiple inheritance could cause ambiguity if the parents had 
similar methods. If you'd like to know more about such cases check out the 
popular example known as The Diamond Problem(https://bit.ly/2y0OQSE). 
Java's solution to the multiple inheritance problem is Interfaces. 
 

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem


 

79 
 

Interfaces 
An interface is like a facade or an outline of some imaginary class.    Its sole purpose 
is to be inherited by some other class.    It only defines what needs to be done, but 
not how to do it.    In other words, the interface would list the methods that need 
to be included in the class but no implementation code whatsoever. The 
implementations of these methods are the responsibility of the classes 
implementing that interface.    Once you implement that interface in a class, you 
can then start instantiating objects as usual. 

  
The reason Java introduced interfaces is because of the multiple inheritance 
problem.    A single class can be extended by multiple classes.    But a child class is 
not allowed to extend more than one parent class. 

 
Interfaces, however, don't have that restriction,  which means that a single class 
can implement multiple interfaces allowing    for a more flexible design but without 
the ambiguity problem of the multiple inheritance. 



 

80 
 

Let's have a look at an example. Imagine you're responsible of implementing a class 
called Caravan.  We know that a caravan is half vehicle, half house.  But if you had 
a class for a vehicle and a class for a house, we know that you're not allowed to 
extend both classes at the same time. A good solution would be to introduce 
interfaces.    A good interface would be the movable interface, for example, which 
would define the methods that any class that moves should include, like the vehicle 
class, for example.  Another good interface would be called the habitable interface, 
which would also define all the methods that are to be included for any habitable 
class.     

 
Once we define those two interfaces, we could then implement both of them in the 
Caravan class at the same time. Let's have a look at the Java code for that. Creating 
an interface in Java is very similar to creating a class.  Simply swap the keyword 
class with interface. Inside the interface, as you can see, we have listed the method 
signatures but without    any implementation code because that's the responsibility 
of the class that will be implementing that interface. 
 The same for the habitable interface, which in our case here only includes the 
canFit method.     



 

81 
 

Once we create both of those interfaces, we can then start implementing our 
Caravan class, which implements both the habitable and movable interfaces.    
Notice that I've used the keyword, implements,  here compared to the keyword, 
extends.    When inheriting from classes, implements is the keyword to use when 
inheriting from interfaces.    

Once we implement those interfaces, we have to implement the code for every 
single method included in both those interfaces like the move method which was 
included in the moveable interface    and the canFit method which was included in 
the habitable interface.    If there's any method in any of    those interfaces that was 
not implemented in the Caravan class,   that will show a compilation error.    Notice 
that inheriting interfaces hasn't really saved us from rewriting any code like we've 
done before with extended classes.  

That's because interfaces aren’t there to help    us reduce code as much as enforce 
a good design.    Creating interfaces forces any class that will    implement it to have 
to implement a certain number of methods.    This means that later on,  if you have 
a look at any class that implements    a certain interface without looking at the code 
of that class,    you can guarantee that it will include all these methods that are in 
that interface.    



 

82 
 

 
 
 
 

Comparable Interface 
 
A very popular interface in Java is the Comparable Interface 
(https://bit.ly/2NW6GRO). 
This interface includes a single method definition called compareTo which takes an 
object as an input parameter of the same type and compares both objects ("this" 
object against the input argument object). 
The main purpose of this interface is to give any class a chance to describe how to 
compare 2 objects of that class against each other. This will be really handy when 
we get to sorting or searching for such objects of that type. For example: 

Assume you have a class that represents a book: 

public class Book{ 
   int numberOfPages; 
   String title; 
   String author; 
} 
 

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html


 

83 
 

And you are asked to implement the Comparable Interface so that you can sort 
the books according to the following criteria: 

1. If a book has more pages than the other, then the book with the more pages goes 
first. 

2. If both books have the same number of pages, then sort by the title 
alphabetically. 

3. If both books have the same number of pages and the same title, then sort by the 
author alphabetically. 
Before we start coding, let’s go through how the compareTo method should 
work:   

The compareTo method takes a single input parameter (let's refer to it as the 
"specified object") and since this method belongs to an object itself (let's refer to 
it as "this object"), then the method simply compares the "specified" object 
against "this" object. According to the documentation, there are 3 possible 
outcomes when comparing any 2 objects: 

1. "This" object is considered less than the "specified" object 
2. "This" object is considered equal to the "specified" object 
3. "This" object is considered greater than the "specified" object 

Respectively, for each of those cases, compareTo method should return: 
1. A negative integer (any number less than 0) 
2. zero (0) 
3. A positive integer (any number greater than 0) 

Ok, now that we've got everything well defined, let's start coding: 

public class Book implements Comparable<Book>{ 
   public int compareTo(Book specifiedBook) { 
      // First check if they have different page counts 
      if(this.numberOfPages != specifiedBook.numberOfPages){ 
         // this will return a negative value if this < specified but will return a positive 
value if this > specified 
         return this.numberOfPages - specifiedBook.numberOfPages; 
      } 
      // If page counts are identical then check if the titles are different 
      if(!this.title.equals(specifiedBook.title){ 
         return this.title.compareTo(specifiedBook.title); 
      } 



 

84 
 

      // If page titles are also identical then return the comparison of the authors 
      return this.author.compareTo(specifiedBook.author);     }   } 

Final methods 
OOP (Object Oriented Programming) is powerful - you can extend classes, add 
features to them and even override their methods to behave differently.  

But, remember ... 

Being able to override any method could be dangerous. If someone creates a class 
with a certain method, they assume this method behaves in a certain way. 

That's why, if you want to protect your method from being overridden in a child 
class you can prefix it with the keyword final. 
A final method can still be accessed by the child class (if the permissions allow so) 
but cannot be overridden, hence you can guarantee that any final method will 
behave exactly like the parent's implementation. 

Here's an example: 

public class Room { 
   private double width; 
   private double height; 
   public Room (double width, double height){ 
      this.width = width; 
      this.height =height; 
   } 
   public final double getArea(){ 
      return width*height; 
   }  } 



 

85 
 

Now if another class extends Room, no matter what type of room it is it shouldn't 
be allowed to override the method getArea because the area should always be 
calculated the same way: 

public class LivingRoom extends Room{ 
   // The constructor simply calls the parent's constructor using super() 
   public LivingRoom(double width, double height){ 
        super(width,height); 
    } 
   // Not allowed to override getArea() here 
} 
 

But since the method is public, it means that it's also available in the child class: 

LivingRoom myLivingRoom = new LivingRoom(5,3); 
double area = myLivingRoom.getArea(); 
System.out.println(area); 
The above code will work just fine, and the output will be 15.0 as expected! 

Final fields 
The final keyword can also be used to describe fields. However, unlike with 
methods, a final field has nothing to do with inheritance! 
A final field is simply a constant variable! In other words, a variable that is only to 
be set once and is not allowed to change ever again! 

A good example of a final field is defining math constants, like PI: 
 
public class MathLib{ 
   public final double PI = 3.14; 
} 
This basically means that even though the field is public, you are not allowed to 
change the value of PI anywhere (inside or outside of this class). 

public static void main(String [] args){ 
   MathLib mathlib = new MathLib(); 
   mathlib.PI = 0; // This is not allowed and will show a compiler error! 
} 



 

86 
 

 Static  
Objects that are created from a class don't really last forever. Typically, you'd 

create an object from a class, fill its fields with some values, and maybe create 

another object and fill its fields    with some different values, but then eventually, 

both those objects will get destroyed, including every single value stored in those 

fields. 

Typically, that would happen whenever the scope of that object ends. For example, 

here, inside this method, I've created the variable myItem, which is an object of the 

type class Item. Once this method ends, this myItem variable doesn't exist 

anymore, including all the values of all the field inside it.  

This kind of makes sense because you don't really need the values of    a field inside 

an object that you can't even access anymore. However, in some rare occasions, 

you might want to store the value of    a certain field even if there are no objects 

for that class.    In that case, you need to add the keyword static when declaring 

this field.    Declaring a field as static means that these values are no longer    stored 

within the object itself but within the class instead.  



 

87 
 

Meaning that all objects of the class will share that same exact value. And then 

even if every single object of the class has been destroyed, the value is still stored 

within the class. If you decide to create a new object of that same class, then it will 

end up using the same value that was stored in the class. Notice however, that 

static here doesn't mean that the value doesn't change. In fact, if that value does 

change, it will update it in every single object of that class again.    Now because 

static fields belong to classes instead of object, Java allows you to access a static 

field directly from    the class instead of having to create an object of that class. For 

example here, I can access the power field    from the class item directly and set it 

to a value.    

Let's have a look at a coding example. In this example, I've created a class called 

Person, and I'm trying to keep count of every single object that was created from 

the class. So, I've added this public int field called count, and inside the constructor, 

which is just the default constructor,    I'm incrementing that count by one,    which 

means that every time I create a new object of Person,    it will add one to that 

count variable.     



 

88 
 

Now if you go to the main method, you could see that I've created this loop that    

starts from zero and counts all the way to, and inside that loop, I'm creating a new 

instance of that class Person.    And every time I create an object, I print out the 

count value installed inside it.    So, when I run this code, I would expect that every 

time I'm creating a new Person object, it's adding one to the counter, and by the 

time we reach to the hundredth Person, the count value would be.  So, I'm 

expecting to see the numbers between one and a hundred. However, if I do run 

this code, it seems like I'm just getting a bunch of ones, which means that this count 

variable is not being updated at all.    

The explanation for that is pretty simple. If we go back to the Person class, you’d 

notice that I haven't declared this count variable as static, which means that it 

belongs to the object not the class. And because I'm creating a new object every 

time, it means I'm creating a new variable called count and I'm only adding one to 

it. So, every single object would have its own count variable that has the value one.    

However, if I do add the static keyword to our count variable here, this means that 

this variable now belongs to the class rather than the object. And every time I'm 

calling the constructor, it’s adding one to the same variable count.  



 

89 
 

So if I run this now, I should get all the numbers between one and 100  like I 

expected earlier.    Counting the instances that were created from a class is one of 

the very common use cases for using the static keyword. So why don't you go ahead 

and try this yourself as well.   

Static Methods -1 
 

The static keyword can also be used to describe methods, allowing you to simply 
call the method from the class rather than having to create an object first and then 
calling the method. Static methods, however, have limited capabilities since it can't 
access non-static fields in the object anymore. 
But before we get too much into static methods, go ahead and try out the static 
fields yourself. 

So, when should we declare fields or methods to be static and when should we not? 

The short answer is in most cases you would want the variables and methods to 
belong to a certain object rather than the entire class, which means most of the 
time you won't declare them as static. However, if you end up creating a class that 
provides some sort of functionality rather than have a state of its own, then that's 
a perfect case to use static for almost all of its methods and fields. 

For example, remember the Math class that we used to generate random 
numbers? It turns out that Math is nothing more than a class with a bunch of static 
methods like random() and others. Because it doesn't really make sense to create 
an object called math1 and another called math2, all Maths are the same and hence 
we can simply use the class itself to call its methods directly, and that's why static 
was a good choice here. 
 

 
 
 



 

90 
 

Quiz: Try it out yourself 
 

Create a new project in IntelliJ , and make a new class called Person that contains 
a static counter and another non-static counter. Increment both counters in the 
constructor: 

public class Person { 
    public static int instanceCount; 
    public int localCount; 
    public Person(){ 
        instanceCount++; 
        localCount++; 
    } 
} 
Then, in the main function, create multiple instances of the class Person and 
check out what the values are for each counter. 
public static void main(String[] args) { 
   Person person1 = new Person(); 
   Person person2 = new Person(); 
   Person person3 = new Person(); 
   Person person4 = new Person(); 
   // Print the values of both counters 
   System.out.println("(" + person4.localCount + "," + Person.instanceCount + ")"); 
} 
 



 

91 
 

Static Methods - 2 
Just like static fields, static methods also belong to the class rather than the object. 

It's ideally used to create a method that doesn't need to access any fields in the 

object, in other words, a method that is a standalone function. 

A static method takes input arguments and returns a result based only on those input 

values and nothing else. 

Not needing any field values makes it easy for a method to be attached to the class 

definition and not an individual object since it doesn't care about the values of any 

of the fields. 

However, a static method can still access static fields, that's because static fields also 

belong to the class and are shared amongst all objects of that class. 

Here's an example of a calculator implementation with some static methods: 

 

public class Calculator { 
 
    public static int add(int a, int b) { 
        return a + b; 
    } 
 
    public static int subtract(int a, int b) { 
        return a - b; 
    } 
 
} 
 

 
Since both add and subtract don't need any object-specific values, they can be 
declared static as seen above and hence you can call them directly using the class 
name Calculator without the need to create an object variable at all: 
Calculator.add(5,10); 

 
 
 
 



 

92 
 

Summary 
 

Well done. I hope you've learned a few things this lesson. 

 

✓ You've seen how to use Inheritance to extend classes and add more 

functionality to them. 

✓ Then we've talked about overriding methods and modifying existing 

methods that were inherited from a parent.  

✓ We've used the super keyword to access parent fields and methods directly 

from a child. 

✓ And then we've seen how to use interfaces that will help us make our code 

design even better. 

✓ And finally, we learned that final protects methods from being overridden 

and fields from being modified and how static methods and fields belong to 

classes rather than objects. 

In the next lesson you'll get to use a very important component of Java called 

Collections. If you're familiar with arrays it's actually very similar but way more 

powerful. So, let's get to it. 


